// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { template void PixelUnshuffleGradKernel(const Context& dev_ctx, const DenseTensor& out_grad, int downscale_factor, const std::string& data_format, DenseTensor* x_grad) { auto* dout = &out_grad; auto* dx = x_grad; dev_ctx.template Alloc(dx); int factor = downscale_factor; bool channel_last = (data_format == "NHWC"); const auto& do_dims = dout->dims(); const auto& dx_dims = dx->dims(); DenseTensor t(*dout); if (!channel_last) { t.Resize({do_dims[0], dx_dims[1], factor, factor, do_dims[2], do_dims[3]}); } else { t.Resize({do_dims[0], do_dims[1], do_dims[2], dx_dims[3], factor, factor}); } std::vector axis = {0, 1, 4, 2, 5, 3}; DenseTensor o(*dx); if (!channel_last) { o.Resize({do_dims[0], dx_dims[1], do_dims[2], factor, do_dims[3], factor}); } else { o.Resize({do_dims[0], do_dims[1], factor, do_dims[2], factor, dx_dims[3]}); } phi::funcs::Transpose trans; trans(dev_ctx, t, &o, axis); dx->Resize(dx_dims); } } // namespace phi