- backward_api : conv3d_grad forward : conv3d (Tensor x, Tensor kernel, int[] paddings, int[] dilations, int[] strides, int groups, bool subm) -> Tensor(out@SparseCooTensor), Tensor(rulebook@DenseTensor) args : (Tensor x, Tensor kernel, Tensor rulebook, Tensor out_grad, int[] paddings, int[] dilations, int[] strides, int groups, bool subm) output : Tensor(x_grad@SparseCooTensor), Tensor(kernel_grad@DenseTensor) kernel : func : sparse_conv3d_grad - backward_api : coo_to_dense_grad forward : coo_to_dense(Tensor x) -> Tensor(out@DenseTensor) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad@SparseCooTensor) kernel : func : sparse_coo_to_dense_grad - backward_api : coo_values_grad forward : coo_values(Tensor x) -> Tensor(out@DenseTensor) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad@SparseCooTensor) kernel : func : coo_values_grad - backward_api : create_sparse_coo_tensor_grad forward : create_sparse_coo_tensor(Tensor values, Tensor indices, IntArray dense_shape) -> Tensor(out@SparseCooTensor) args : (Tensor indices, Tensor out_grad) output : Tensor(values_grad@DenseTensor) kernel : func : sparse_coo_tensor_grad - backward_api : dense_to_coo_grad forward : dense_to_coo(Tensor x, int64_t sparse_dim) -> Tensor(out@SparseCooTensor) args : (Tensor out_grad) output : Tensor(x_grad@DenseTensor) invoke : to_dense_impl(out_grad) - backward_api : sparse_coo_relu_grad forward : sparse_coo_relu(Tensor x) -> Tensor(out@SparseCooTensor) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad@SparseCooTensor) kernel : func : sparse_coo_relu_grad - backward_api : sparse_coo_sin_grad forward : sparse_coo_sin(Tensor x) -> Tensor(out@SparseCooTensor) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad@SparseCooTensor) kernel : func : sparse_coo_sin_grad - backward_api : sparse_coo_sqrt_grad forward : sparse_coo_sqrt(Tensor x) -> Tensor(out@SparseCooTensor) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad@SparseCooTensor) kernel : func : sparse_coo_sqrt_grad - backward_api : sparse_coo_tanh_grad forward : sparse_coo_tanh(Tensor x) -> Tensor(out@SparseCooTensor) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad@SparseCooTensor) kernel : func : sparse_coo_tanh_grad - backward_api : sparse_maxpool_grad forward : sparse_maxpool(Tensor x, int[] kernel_sizes, int[] paddings, int[] dilations, int[] strides) -> Tensor(out@SparseCooTensor), Tensor(rulebook@DenseTensor) args : (Tensor x, Tensor rulebook, Tensor out, Tensor out_grad, int[] kernel_sizes) output : Tensor(x_grad@SparseCooTensor) kernel : func : sparse_maxpool_grad