file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py") string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}") function(_inference_analysis_python_api_int8_test target model_dir data_path filename use_mkldnn) py_test(${target} SRCS ${filename} ENVS CPU_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} FLAGS_use_mkldnn=${use_mkldnn} ARGS --infer_model ${model_dir}/model --infer_data ${data_path} --int8_model_save_path int8_models/${target} --warmup_batch_size ${WARMUP_BATCH_SIZE} --batch_size 50) endfunction() function(inference_analysis_python_api_int8_test target model_dir data_path filename) _inference_analysis_python_api_int8_test(${target} ${model_dir} ${data_path} ${filename} False) endfunction() function(inference_analysis_python_api_int8_test_custom_warmup_batch_size target model_dir data_dir filename warmup_batch_size) set(WARMUP_BATCH_SIZE ${warmup_batch_size}) inference_analysis_python_api_int8_test(${target} ${model_dir} ${data_dir} ${filename}) endfunction() function(inference_analysis_python_api_int8_test_mkldnn target model_dir data_path filename) _inference_analysis_python_api_int8_test(${target} ${model_dir} ${data_path} ${filename} True) endfunction() function(download_qat_data install_dir data_file) if (NOT EXISTS ${install_dir}/${data_file}) inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8 ${data_file}) endif() endfunction() function(download_qat_model install_dir data_file) if (NOT EXISTS ${install_dir}/${data_file}) inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8/QAT_models ${data_file}) endif() endfunction() function(download_qat_fp32_model install_dir data_file) if (NOT EXISTS ${install_dir}/${data_file}) inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8/QAT_models/fp32 ${data_file}) endif() endfunction() function(inference_qat_int8_image_classification_test target qat_model_dir dataset_path) py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant_int8_image_classification_comparison.py" ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} FLAGS_use_mkldnn=true ARGS --qat_model ${qat_model_dir} --infer_data ${dataset_path} --batch_size 25 --batch_num 2 --acc_diff_threshold 0.1) endfunction() # set batch_size 10 for UT only (avoid OOM). For whole dataset, use batch_size 25 function(inference_qat2_int8_image_classification_test target qat_model_dir fp32_model_dir dataset_path ops_to_quantize) py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_image_classification_comparison.py" ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} FLAGS_use_mkldnn=true ARGS --qat_model ${qat_model_dir} --fp32_model ${fp32_model_dir} --infer_data ${dataset_path} --batch_size 10 --batch_num 2 --acc_diff_threshold 0.1 --ops_to_quantize ${ops_to_quantize}) endfunction() # set batch_size 10 for UT only (avoid OOM). For whole dataset, use batch_size 20 function(inference_qat2_int8_nlp_test target qat_model_dir fp32_model_dir dataset_path labels_path) py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_nlp_comparison.py" ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI} FLAGS_use_mkldnn=true ARGS --qat_model ${qat_model_dir} --fp32_model ${fp32_model_dir} --infer_data ${dataset_path} --labels ${labels_path} --batch_size 10 --batch_num 2 --acc_diff_threshold 0.1) endfunction() function(download_qat_data install_dir data_file) if (NOT EXISTS ${install_dir}/${data_file}) inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8 ${data_file}) endif() endfunction() function(download_qat_model install_dir data_file) if (NOT EXISTS ${install_dir}/${data_file}) inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8/QAT_models ${data_file}) endif() endfunction() function(save_qat_ic_model_test target qat_model_dir fp32_model_save_path int8_model_save_path ops_to_quantize) py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/save_quant_model.py ARGS --qat_model_path ${qat_model_dir} --fp32_model_save_path ${fp32_model_save_path} --int8_model_save_path ${int8_model_save_path} --ops_to_quantize ${ops_to_quantize}) endfunction() function(save_qat_nlp_model_test target qat_model_dir fp32_model_save_path int8_model_save_path) py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/save_quant_model.py ARGS --qat_model_path ${qat_model_dir} --fp32_model_save_path ${fp32_model_save_path} --int8_model_save_path ${int8_model_save_path}) endfunction() function(convert_model2dot_test target model_path save_graph_dir save_graph_name) py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/convert_model2dot.py ARGS --model_path ${model_path} --save_graph_dir ${save_graph_dir} --save_graph_name ${save_graph_name}) endfunction() if(WIN32) list(REMOVE_ITEM TEST_OPS test_light_nas) list(REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1) list(REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50) list(REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1) endif() if(LINUX AND WITH_MKLDNN) #### Image classification dataset: ImageNet (small) # The dataset should already be downloaded for INT8v2 unit tests set(IMAGENET_DATA_PATH "${INFERENCE_DEMO_INSTALL_DIR}/imagenet/data.bin") #### INT8 image classification python api test # Models should be already downloaded for INT8v2 unit tests set(INT8_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/int8v2") set(INT8_IC_TEST_FILE "test_mkldnn_int8_quantization_strategy.py") set(INT8_IC_TEST_FILE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/${INT8_IC_TEST_FILE}") # googlenet int8 set(INT8_GOOGLENET_MODEL_DIR "${INT8_INSTALL_DIR}/googlenet") inference_analysis_python_api_int8_test_custom_warmup_batch_size(test_slim_int8_googlenet ${INT8_GOOGLENET_MODEL_DIR} ${IMAGENET_DATA_PATH} ${INT8_IC_TEST_FILE_PATH} 10) # mobilenet int8 set(INT8_MOBILENET_MODEL_DIR "${INT8_INSTALL_DIR}/mobilenetv1") inference_analysis_python_api_int8_test(test_slim_int8_mobilenet ${INT8_MOBILENET_MODEL_DIR} ${IMAGENET_DATA_PATH} ${INT8_IC_TEST_FILE_PATH}) inference_analysis_python_api_int8_test_mkldnn(test_slim_int8_mobilenet_mkldnn ${INT8_MOBILENET_MODEL_DIR} ${IMAGENET_DATA_PATH} ${INT8_IC_TEST_FILE_PATH}) # temporarily adding WITH_SLIM_MKLDNN_FULL_TEST FLAG for QA testing the following UTs locally, # since the following UTs cost too much time on CI test. if (WITH_SLIM_MKLDNN_FULL_TEST) # resnet50 int8 set(INT8_RESNET50_MODEL_DIR "${INT8_INSTALL_DIR}/resnet50") inference_analysis_python_api_int8_test(test_slim_int8_resnet50 ${INT8_RESNET50_MODEL_DIR} ${IMAGENET_DATA_PATH} ${INT8_IC_TEST_FILE_PATH}) # mobilenetv2 int8 set(INT8_MOBILENETV2_MODEL_DIR "${INT8_INSTALL_DIR}/mobilenetv2") inference_analysis_python_api_int8_test(test_slim_int8_mobilenetv2 ${INT8_MOBILENETV2_MODEL_DIR} ${IMAGENET_DATA_PATH} ${INT8_IC_TEST_FILE_PATH}) # resnet101 int8 set(INT8_RESNET101_MODEL_DIR "${INT8_INSTALL_DIR}/resnet101") inference_analysis_python_api_int8_test(test_slim_int8_resnet101 ${INT8_RESNET101_MODEL_DIR} ${IMAGENET_DATA_PATH} ${INT8_IC_TEST_FILE_PATH}) # vgg16 int8 set(INT8_VGG16_MODEL_DIR "${INT8_INSTALL_DIR}/vgg16") inference_analysis_python_api_int8_test(test_slim_int8_vgg16 ${INT8_VGG16_MODEL_DIR} ${IMAGENET_DATA_PATH} ${INT8_IC_TEST_FILE_PATH}) # vgg19 int8 set(INT8_VGG19_MODEL_DIR "${INT8_INSTALL_DIR}/vgg19") inference_analysis_python_api_int8_test(test_slim_int8_vgg19 ${INT8_VGG19_MODEL_DIR} ${IMAGENET_DATA_PATH} ${INT8_IC_TEST_FILE_PATH}) endif() #### QAT FP32 & INT8 comparison python api tests set(QAT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/qat") ### QATv1 for image classification # QAT ResNet50 set(QAT_RESNET50_MODEL_DIR "${QAT_INSTALL_DIR}/ResNet50_QAT") set(QAT_RESNET50_MODEL_ARCHIVE "ResNet50_qat_model.tar.gz") download_qat_model(${QAT_RESNET50_MODEL_DIR} ${QAT_RESNET50_MODEL_ARCHIVE}) inference_qat_int8_image_classification_test(test_qat_int8_resnet50_mkldnn ${QAT_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # QAT ResNet101 set(QAT_RESNET101_MODEL_DIR "${QAT_INSTALL_DIR}/ResNet101_QAT") set(QAT_RESNET101_MODEL_ARCHIVE "ResNet101_qat_model.tar.gz") download_qat_model(${QAT_RESNET101_MODEL_DIR} ${QAT_RESNET101_MODEL_ARCHIVE}) # inference_qat_int8_image_classification_test(test_qat_int8_resnet101_mkldnn ${QAT_RESNET101_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # QAT GoogleNet set(QAT_GOOGLENET_MODEL_DIR "${QAT_INSTALL_DIR}/GoogleNet_QAT") set(QAT_GOOGLENET_MODEL_ARCHIVE "GoogleNet_qat_model.tar.gz") download_qat_model(${QAT_GOOGLENET_MODEL_DIR} ${QAT_GOOGLENET_MODEL_ARCHIVE}) inference_qat_int8_image_classification_test(test_qat_int8_googlenet_mkldnn ${QAT_GOOGLENET_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # QAT MobileNetV1 set(QAT_MOBILENETV1_MODEL_DIR "${QAT_INSTALL_DIR}/MobileNetV1_QAT") set(QAT_MOBILENETV1_MODEL_ARCHIVE "MobileNetV1_qat_model.tar.gz") download_qat_model(${QAT_MOBILENETV1_MODEL_DIR} ${QAT_MOBILENETV1_MODEL_ARCHIVE}) inference_qat_int8_image_classification_test(test_qat_int8_mobilenetv1_mkldnn ${QAT_MOBILENETV1_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # QAT MobileNetV2 set(QAT_MOBILENETV2_MODEL_DIR "${QAT_INSTALL_DIR}/MobileNetV2_QAT") set(QAT_MOBILENETV2_MODEL_ARCHIVE "MobileNetV2_qat_model.tar.gz") download_qat_model(${QAT_MOBILENETV2_MODEL_DIR} ${QAT_MOBILENETV2_MODEL_ARCHIVE}) inference_qat_int8_image_classification_test(test_qat_int8_mobilenetv2_mkldnn ${QAT_MOBILENETV2_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # QAT VGG16 set(QAT_VGG16_MODEL_DIR "${QAT_INSTALL_DIR}/VGG16_QAT") set(QAT_VGG16_MODEL_ARCHIVE "VGG16_qat_model.tar.gz") download_qat_model(${QAT_VGG16_MODEL_DIR} ${QAT_VGG16_MODEL_ARCHIVE}) # inference_qat_int8_image_classification_test(test_qat_int8_vgg16_mkldnn ${QAT_VGG16_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) # QAT VGG19 set(QAT_VGG19_MODEL_DIR "${QAT_INSTALL_DIR}/VGG19_QAT") set(QAT_VGG19_MODEL_ARCHIVE "VGG19_qat_model.tar.gz") download_qat_model(${QAT_VGG19_MODEL_DIR} ${QAT_VGG19_MODEL_ARCHIVE}) # inference_qat_int8_image_classification_test(test_qat_int8_vgg19_mkldnn ${QAT_VGG19_MODEL_DIR}/model ${IMAGENET_DATA_PATH}) ### QATv2 for image classification set(QAT2_IC_OPS_TO_QUANTIZE "conv2d,pool2d") # QAT2 ResNet50 with input/output scales in `fake_quantize_moving_average_abs_max` operators, # with weight scales in `fake_dequantize_max_abs` operators set(QAT2_RESNET50_MODEL_DIR "${QAT_INSTALL_DIR}/ResNet50_qat_perf") set(FP32_RESNET50_MODEL_DIR "${INT8_INSTALL_DIR}/resnet50") set(QAT2_RESNET50_MODEL_ARCHIVE "ResNet50_qat_perf.tar.gz") download_qat_model(${QAT2_RESNET50_MODEL_DIR} ${QAT2_RESNET50_MODEL_ARCHIVE}) inference_qat2_int8_image_classification_test(test_qat2_int8_resnet50_mkldnn ${QAT2_RESNET50_MODEL_DIR}/ResNet50_qat_perf/float ${FP32_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH} ${QAT2_IC_OPS_TO_QUANTIZE}) # QAT2 ResNet50 with input/output scales in `fake_quantize_range_abs_max` operators and the `out_threshold` attributes, # with weight scales in `fake_dequantize_max_abs` operators set(QAT2_RESNET50_RANGE_MODEL_DIR "${QAT_INSTALL_DIR}/ResNet50_qat_range") set(QAT2_RESNET50_RANGE_MODEL_ARCHIVE "ResNet50_qat_range.tar.gz") download_qat_model(${QAT2_RESNET50_RANGE_MODEL_DIR} ${QAT2_RESNET50_RANGE_MODEL_ARCHIVE}) inference_qat2_int8_image_classification_test(test_qat2_int8_resnet50_range_mkldnn ${QAT2_RESNET50_RANGE_MODEL_DIR}/ResNet50_qat_range ${FP32_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH} ${QAT2_IC_OPS_TO_QUANTIZE}) # QAT2 ResNet50 with input/output scales in `fake_quantize_range_abs_max` operators and the `out_threshold` attributes, # with weight scales in `fake_channel_wise_dequantize_max_abs` operators set(QAT2_RESNET50_CHANNELWISE_MODEL_DIR "${QAT_INSTALL_DIR}/ResNet50_qat_channelwise") set(QAT2_RESNET50_CHANNELWISE_MODEL_ARCHIVE "ResNet50_qat_channelwise.tar.gz") download_qat_model(${QAT2_RESNET50_CHANNELWISE_MODEL_DIR} ${QAT2_RESNET50_CHANNELWISE_MODEL_ARCHIVE}) inference_qat2_int8_image_classification_test(test_qat2_int8_resnet50_channelwise_mkldnn ${QAT2_RESNET50_CHANNELWISE_MODEL_DIR}/ResNet50_qat_channelwise ${FP32_RESNET50_MODEL_DIR}/model ${IMAGENET_DATA_PATH} ${QAT2_IC_OPS_TO_QUANTIZE}) # QAT2 MobileNetV1 set(QAT2_MOBILENETV1_MODEL_DIR "${QAT_INSTALL_DIR}/MobileNet_qat_perf") set(FP32_MOBILENETV1_MODEL_DIR "${INT8_INSTALL_DIR}/mobilenetv1") set(QAT2_MOBILENETV1_MODEL_ARCHIVE "MobileNet_qat_perf.tar.gz") download_qat_model(${QAT2_MOBILENETV1_MODEL_DIR} ${QAT2_MOBILENETV1_MODEL_ARCHIVE}) inference_qat2_int8_image_classification_test(test_qat2_int8_mobilenetv1_mkldnn ${QAT2_MOBILENETV1_MODEL_DIR}/MobileNet_qat_perf/float ${FP32_MOBILENETV1_MODEL_DIR}/model ${IMAGENET_DATA_PATH} ${QAT2_IC_OPS_TO_QUANTIZE}) ### QATv2 for NLP set(NLP_DATA_ARCHIVE "Ernie_dataset.tar.gz") set(NLP_DATA_DIR "${INFERENCE_DEMO_INSTALL_DIR}/Ernie_dataset") set(NLP_DATA_PATH "${NLP_DATA_DIR}/Ernie_dataset/1.8w.bs1") set(NLP_LABLES_PATH "${NLP_DATA_DIR}/Ernie_dataset/label.xnli.dev") download_qat_data(${NLP_DATA_DIR} ${NLP_DATA_ARCHIVE}) # QAT2 Ernie set(QAT2_ERNIE_MODEL_ARCHIVE "ernie_qat.tar.gz") set(QAT2_ERNIE_MODEL_DIR "${QAT_INSTALL_DIR}/Ernie_qat") download_qat_model(${QAT2_ERNIE_MODEL_DIR} ${QAT2_ERNIE_MODEL_ARCHIVE}) set(FP32_ERNIE_MODEL_ARCHIVE "ernie_fp32_model.tar.gz") set(FP32_ERNIE_MODEL_DIR "${QAT_INSTALL_DIR}/Ernie_float") download_qat_fp32_model(${FP32_ERNIE_MODEL_DIR} ${FP32_ERNIE_MODEL_ARCHIVE}) inference_qat2_int8_nlp_test(test_qat2_int8_ernie_mkldnn ${QAT2_ERNIE_MODEL_DIR}/Ernie_qat/float ${FP32_ERNIE_MODEL_DIR}/ernie_fp32_model ${NLP_DATA_PATH} ${NLP_LABLES_PATH}) ### Save QAT2 FP32 model or QAT2 INT8 model set(QAT2_INT8_RESNET50_SAVE_PATH "${QAT_INSTALL_DIR}/ResNet50_qat2_int8") set(QAT2_FP32_RESNET50_SAVE_PATH "${QAT_INSTALL_DIR}/ResNet50_qat2_fp32") save_qat_ic_model_test(save_qat2_model_resnet50 ${QAT2_RESNET50_MODEL_DIR}/ResNet50_qat_perf/float ${QAT2_FP32_RESNET50_SAVE_PATH} ${QAT2_INT8_RESNET50_SAVE_PATH} ${QAT2_IC_OPS_TO_QUANTIZE}) set(QAT2_INT8_ERNIE_SAVE_PATH "${QAT_INSTALL_DIR}/Ernie_qat2_int8") set(QAT2_FP32_ERNIE_SAVE_PATH "${QAT_INSTALL_DIR}/Ernie_qat2_fp32") save_qat_nlp_model_test(save_qat2_model_ernie ${QAT2_ERNIE_MODEL_DIR}/Ernie_qat/float ${QAT2_FP32_ERNIE_SAVE_PATH} ${QAT2_INT8_ERNIE_SAVE_PATH}) # Convert QAT2 model to dot and pdf files set(QAT2_INT8_ERNIE_DOT_SAVE_PATH "${QAT_INSTALL_DIR}/Ernie_qat2_int8_dot_file") convert_model2dot_test(convert_model2dot_ernie ${QAT2_ERNIE_MODEL_DIR}/Ernie_qat/float ${QAT2_INT8_ERNIE_DOT_SAVE_PATH} "Ernie_qat2_int8") endif() # Since the tests for QAT FP32 & INT8 comparison support only testing on Linux # with MKL-DNN, we remove it here to not test it on other systems. list(REMOVE_ITEM TEST_OPS test_mkldnn_int8_quantization_strategy qat_int8_image_classification_comparison qat_int8_nlp_comparison) #TODO(wanghaoshuang): Fix this unitest failed on GCC8. LIST(REMOVE_ITEM TEST_OPS test_auto_pruning) LIST(REMOVE_ITEM TEST_OPS test_filter_pruning) foreach(src ${TEST_OPS}) py_test(${src} SRCS ${src}.py) endforeach()