# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest def unpool2dmax_forward_naive(input, indices, ksize, strides, paddings): s0, s1, s2, s3 = input.shape out_hsize = (s2 - 1) * strides[0] - 2 * paddings[0] + ksize[0] out_wsize = (s2 - 1) * strides[1] - 2 * paddings[1] + ksize[1] out = np.zeros((s0, s1, out_hsize, out_wsize)) for nidx in xrange(s0): for cidx in xrange(s1): for h in xrange(s2): for w in xrange(s3): index = indices[nidx, cidx, h, w] hidx = (index - index % out_wsize) / out_wsize widx = index % out_wsize out[nidx, cidx, int(hidx), int(widx)] = \ input[nidx, cidx, h, w] return out class TestUnpoolOp(OpTest): def setUp(self): self.op_type = "unpool" self.init_test_case() pre_input = np.random.random(self.shape).astype("float32") nsize, csize, hsize, wsize = pre_input.shape hsize_out = (hsize - self.ksize[0] + 2 * self.paddings[0]) / \ self.strides[0] + 1 wsize_out = (wsize - self.ksize[1] + 2 * self.paddings[1]) / \ self.strides[1] + 1 input = np.zeros((nsize, csize, hsize_out, wsize_out)) indices = np.zeros((nsize, csize, hsize_out, wsize_out)) for i in xrange(hsize_out): for j in xrange(wsize_out): r_start = np.max((i * self.strides[0] - self.paddings[0], 0)) r_end = np.min((i * self.strides[0] + self.ksize[0] - \ self.paddings[0], hsize)) c_start = np.max((j * self.strides[1] - self.paddings[1], 0)) c_end = np.min((j * self.strides[1] + self.ksize[1] - \ self.paddings[1], wsize)) for nidx in xrange(nsize): for cidx in xrange(csize): x_masked = pre_input[nidx, cidx, r_start:r_end, \ c_start:c_end] input[nidx, cidx, i, j] = x_masked.max() arg = x_masked.argmax() indices[nidx, cidx, i, j] = \ (r_start + arg / self.ksize[1]) * wsize + \ c_start + arg % self.ksize[1] output = self.unpool2d_forward_naive(input, indices, self.ksize, \ self.strides, self.paddings).astype("float32") self.inputs = { 'X': input.astype('float32'), 'Indices': indices.astype('int32') } self.attrs = { 'strides': self.strides, 'paddings': self.paddings, 'ksize': self.ksize, 'unpooling_type': self.unpooling_type, } self.outputs = {'Out': output.astype('float32')} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') def init_test_case(self): self.unpool2d_forward_naive = unpool2dmax_forward_naive self.unpooling_type = "max" self.shape = [6, 4, 5, 5] self.ksize = [3, 3] self.strides = [2, 2] self.paddings = [0, 0] if __name__ == '__main__': unittest.main()