# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.v2.fluid.core as core from paddle.v2.fluid.executor import Executor import paddle.v2.fluid.layers as layers from paddle.v2.fluid.backward import append_backward from paddle.v2.fluid.framework import switch_main_program from paddle.v2.fluid.framework import Program import numpy as np class TestPrintOpCPU(unittest.TestCase): def setUp(self): self.place = core.CPUPlace() self.x_tensor = core.LoDTensor() tensor_np = np.random.random(size=(2, 3)).astype('float32') self.x_tensor.set(tensor_np, self.place) self.x_tensor.set_lod([[0, 1, 1]]) def build_network(self, only_forward, **kargs): x = layers.data('x', shape=[3], dtype='float32', lod_level=1) x.stop_gradient = False printed = layers.Print(input=x, **kargs) if only_forward: return printed loss = layers.mean(x=printed) append_backward(loss=loss) return loss def test_forward(self): switch_main_program(Program()) printed = self.build_network(True, print_phase='forward') exe = Executor(self.place) outs = exe.run(feed={'x': self.x_tensor}, fetch_list=[printed], return_numpy=False) def test_backward(self): switch_main_program(Program()) loss = self.build_network(False, print_phase='backward') exe = Executor(self.place) outs = exe.run(feed={'x': self.x_tensor}, fetch_list=[loss], return_numpy=False) class TestPrintOpGPU(TestPrintOpCPU): def setUp(self): self.place = core.CUDAPlace(0) self.x_tensor = core.LoDTensor() tensor_np = np.random.random(size=(2, 3)).astype('float32') self.x_tensor.set(tensor_np, self.place) self.x_tensor.set_lod([[0, 1, 1]]) if __name__ == '__main__': unittest.main()