# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import op_test import unittest import numpy as np def create_test_class(op_type, callback, binary_op=True): class Cls(op_test.OpTest): def setUp(self): a = np.random.choice(a=[True, False], size=(10, 7)).astype(bool) if binary_op: b = np.random.choice(a=[True, False], size=(10, 7)).astype(bool) c = callback(a, b) else: c = callback(a) self.outputs = {'Out': c} self.op_type = op_type if binary_op: self.inputs = {'X': a, 'Y': b} else: self.inputs = {'X': a} def test_output(self): self.check_output() Cls.__name__ = op_type globals()[op_type] = Cls create_test_class('logical_and', lambda _a, _b: np.logical_and(_a, _b)) create_test_class('logical_or', lambda _a, _b: np.logical_or(_a, _b)) create_test_class('logical_not', lambda _a: np.logical_not(_a), False) create_test_class('logical_xor', lambda _a, _b: np.logical_xor(_a, _b)) if __name__ == '__main__': unittest.main()