# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import errno import math import os import matplotlib import numpy import paddle.v2 as paddle import paddle.v2.fluid as fluid matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec NOISE_SIZE = 100 NUM_PASS = 1000 NUM_REAL_IMGS_IN_BATCH = 121 NUM_TRAIN_TIMES_OF_DG = 3 LEARNING_RATE = 2e-5 def D(x): hidden = fluid.layers.fc(input=x, size=200, act='relu', param_attr='D.w1', bias_attr='D.b1') logits = fluid.layers.fc(input=hidden, size=1, act=None, param_attr='D.w2', bias_attr='D.b2') return logits def G(x): hidden = fluid.layers.fc(input=x, size=200, act='relu', param_attr='G.w1', bias_attr='G.b1') img = fluid.layers.fc(input=hidden, size=28 * 28, act='tanh', param_attr='G.w2', bias_attr='G.b2') return img def plot(gen_data): gen_data.resize(gen_data.shape[0], 28, 28) n = int(math.ceil(math.sqrt(gen_data.shape[0]))) fig = plt.figure(figsize=(n, n)) gs = gridspec.GridSpec(n, n) gs.update(wspace=0.05, hspace=0.05) for i, sample in enumerate(gen_data): ax = plt.subplot(gs[i]) plt.axis('off') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(sample.reshape(28, 28), cmap='Greys_r') return fig def main(): try: os.makedirs("./out") except OSError as e: if e.errno != errno.EEXIST: raise startup_program = fluid.Program() d_program = fluid.Program() dg_program = fluid.Program() with fluid.program_guard(d_program, startup_program): img = fluid.layers.data(name='img', shape=[784], dtype='float32') d_loss = fluid.layers.sigmoid_cross_entropy_with_logits( x=D(img), label=fluid.layers.data( name='label', shape=[1], dtype='float32')) d_loss = fluid.layers.mean(x=d_loss) with fluid.program_guard(dg_program, startup_program): noise = fluid.layers.data( name='noise', shape=[NOISE_SIZE], dtype='float32') g_img = G(x=noise) g_program = dg_program.clone() dg_loss = fluid.layers.sigmoid_cross_entropy_with_logits( x=D(g_img), label=fluid.layers.fill_constant_batch_size_like( input=noise, dtype='float32', shape=[-1, 1], value=1.0)) dg_loss = fluid.layers.mean(x=dg_loss) opt = fluid.optimizer.Adam(learning_rate=LEARNING_RATE) opt.minimize(loss=d_loss, startup_program=startup_program) opt.minimize( loss=dg_loss, startup_program=startup_program, parameter_list=[ p.name for p in g_program.global_block().all_parameters() ]) exe = fluid.Executor(fluid.CPUPlace()) exe.run(startup_program) num_true = NUM_REAL_IMGS_IN_BATCH train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=60000), batch_size=num_true) for pass_id in range(NUM_PASS): for batch_id, data in enumerate(train_reader()): num_true = len(data) n = numpy.random.uniform( low=-1.0, high=1.0, size=[num_true * NOISE_SIZE]).astype('float32').reshape( [num_true, NOISE_SIZE]) generated_img = exe.run(g_program, feed={'noise': n}, fetch_list={g_img})[0] real_data = numpy.array(map(lambda x: x[0], data)).astype('float32') real_data = real_data.reshape(num_true, 784) total_data = numpy.concatenate([real_data, generated_img]) total_label = numpy.concatenate([ numpy.ones( shape=[real_data.shape[0], 1], dtype='float32'), numpy.zeros( shape=[real_data.shape[0], 1], dtype='float32') ]) d_loss_np = exe.run(d_program, feed={'img': total_data, 'label': total_label}, fetch_list={d_loss})[0] for _ in xrange(NUM_TRAIN_TIMES_OF_DG): n = numpy.random.uniform( low=-1.0, high=1.0, size=[2 * num_true * NOISE_SIZE]).astype('float32').reshape( [2 * num_true, NOISE_SIZE, 1, 1]) dg_loss_np = exe.run(dg_program, feed={'noise': n}, fetch_list={dg_loss})[0] print("Pass ID={0}, Batch ID={1}, D-Loss={2}, DG-Loss={3}".format( pass_id, batch_id, d_loss_np, dg_loss_np)) # generate image each batch fig = plot(generated_img) plt.savefig( 'out/{0}.png'.format(str(pass_id).zfill(3)), bbox_inches='tight') plt.close(fig) if __name__ == '__main__': main()