// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/reduce_op_handle.h" #include "paddle/fluid/framework/convert_utils.h" #include "paddle/fluid/framework/details/container_cast.h" #include "paddle/fluid/framework/details/reduce_and_gather.h" #include "paddle/fluid/framework/details/variable_visitor.h" #include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/profiler/event_tracing.h" PADDLE_DEFINE_EXPORTED_bool( cpu_deterministic, false, "Whether to make the result of computation deterministic in CPU side."); namespace paddle { namespace framework { namespace details { std::once_flag CollectiveContext::init_flag_; std::unique_ptr CollectiveContext::context_; static inline std::string GetRemoteVarName(const std::string &var_name, int trainer_id) { return string::Sprintf("%s_merged_tmp@trainer_%d", var_name, trainer_id); } void ReduceOpHandle::Wait( const std::map &dev_ctxes) { // TODO(gongwb): use event wait? for (auto &dev_ctx : dev_ctxes) { dev_ctx.second->Wait(); } } void ReduceOpHandle::RunImpl() { platform::RecordEvent record_event( Name(), platform::TracerEventType::Communication, 1); if (places_.size() == 1) return; // the input and output may have dummy var. auto in_var_handles = DynamicCast(inputs_); PADDLE_ENFORCE_EQ( in_var_handles.size(), places_.size(), platform::errors::InvalidArgument( "The number of inputs should equal to the number of places, but got " "the number of inputs is %d and the number of places is %d.", in_var_handles.size(), places_.size())); VarHandle *out_var_handle; { auto out_var_handles = DynamicCast(outputs_); PADDLE_ENFORCE_EQ(out_var_handles.size(), 1UL, platform::errors::InvalidArgument( "The number of output should be one, but got %d.", out_var_handles.size())); out_var_handle = out_var_handles.front(); } auto in_0_handle = in_var_handles[0]; auto &var_scopes = local_exec_scopes_; auto pre_in_var = var_scopes.at(in_0_handle->scope_idx())->FindVar(in_0_handle->name()); PADDLE_ENFORCE_NOT_NULL(pre_in_var, platform::errors::NotFound( "Variable %s is not found in scope.", in_0_handle->name())); // NOTE: The Places of all input tensor must be all on CPU or all on GPU. std::vector in_places; // used to get dev_ctx for (auto *in_handle : in_var_handles) { in_places.emplace_back(in_handle->place()); auto in_var = var_scopes.at(in_handle->scope_idx())->FindVar(in_handle->name()); PADDLE_ENFORCE_NOT_NULL( in_var, platform::errors::NotFound("Variable %s is not found in scope.", in_handle->name())); VariableVisitor::EnforceShapeAndDTypeEQ(*pre_in_var, *in_var); } auto out_var = var_scopes.at(out_var_handle->scope_idx()) ->FindVar(out_var_handle->name()); PADDLE_ENFORCE_NOT_NULL( out_var, platform::errors::NotFound("Variable %s is not found in scope.", out_var_handle->name())); // NOTE: The tensors' Place of input and output must be all on GPU or all on // CPU. auto in_p = VariableVisitor::GetMutableTensor(pre_in_var).place(); platform::Place t_out_p; if (platform::is_gpu_place(in_p)) { PADDLE_ENFORCE_EQ(platform::is_gpu_place(out_var_handle->place()), true, platform::errors::PreconditionNotMet( "Places of input and output must be all on GPU.")); t_out_p = out_var_handle->place(); } else { t_out_p = platform::CPUPlace(); } if (pre_in_var->IsType()) { this->RunAndRecordEvent([&] { std::vector in_selected_rows = GetInputValues(in_var_handles, var_scopes); const CollectiveContext &collective_context = *CollectiveContext::GetInstance(); VLOG(10) << "GatherSelectedRows CollectiveContext:" << collective_context.String(); // TODO(gongwb): add cpu support if (collective_context.endpoints_.size() <= 1 || platform::is_cpu_place(in_places[0]) || platform::is_cpu_place(t_out_p)) { GatherLocalSelectedRowsFunctor functor( in_selected_rows, in_places, dev_ctxes_, t_out_p, out_var->GetMutable()); WaitInputVarGenerated(); functor(); return; } }); } else { std::vector lod_tensors = GetInputValues(in_var_handles, var_scopes); if (paddle::platform::is_cpu_place(lod_tensors[0]->place())) { WaitInputVarGenerated(); this->RunAndRecordEvent([&] { // FIXME(zcd): The order of summing is important, // especially when the type of data is float or double. // For example, the result of `a+b+c+d` may be different // with the result of `c+a+b+d`, so the summing order should be fixed. if (!FLAGS_cpu_deterministic) { ReduceLoDTensor func(lod_tensors, out_var->GetMutable()); VisitDataType(framework::TransToProtoVarType(lod_tensors[0]->dtype()), func); } else { // We sum lod_tensors to reduce_sum_trg which is in local_scopes_0 // here, but it doesn't mean reduce_sum_trg must be in local_scopes_0. auto &reduce_sum_trg = *this->local_exec_scopes_[0] ->FindVar(out_var_handle->name()) ->GetMutable(); ReduceLoDTensor func(lod_tensors, &reduce_sum_trg); VisitDataType(framework::TransToProtoVarType(lod_tensors[0]->dtype()), func); auto trg = out_var->GetMutable(); if (reduce_sum_trg.data() != trg->data()) { TensorCopy(reduce_sum_trg, platform::CPUPlace(), trg); } } }); } else if (paddle::platform::is_gpu_place(lod_tensors[0]->place())) { #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) auto pre_in = pre_in_var->Get(); VariableVisitor::ShareDimsAndLoD(*pre_in_var, out_var); VariableVisitor::GetMutableTensor(out_var).mutable_data( out_var_handle->place(), pre_in.dtype()); auto out_p = out_var_handle->place(); int root_id = out_p.device; std::vector> all_reduce_calls; for (size_t i = 0; i < var_scopes.size(); ++i) { auto &p = in_places[i]; auto &lod_tensor = *lod_tensors[i]; int dev_id = p.device; auto &nccl_ctx = nccl_ctxs_->at(dev_id); void *buffer = const_cast(lod_tensor.data()); void *recvbuffer = nullptr; if (root_id == dev_id) { recvbuffer = out_var->GetMutable()->mutable_data( out_var_handle->place()); } int type = platform::ToNCCLDataType( framework::TransToProtoVarType(lod_tensor.dtype())); size_t numel = static_cast(lod_tensor.numel()); all_reduce_calls.emplace_back( [buffer, recvbuffer, type, numel, root_id, &nccl_ctx] { PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce( buffer, recvbuffer, numel, static_cast(type), ncclSum, root_id, nccl_ctx.comm_, nccl_ctx.stream())); }); } WaitInputVarGenerated(); this->RunAndRecordEvent([&] { platform::NCCLGroupGuard guard; for (auto &call : all_reduce_calls) { call(); } }); #else PADDLE_THROW( platform::errors::PreconditionNotMet("Not compiled with CUDA.")); #endif } else if (paddle::platform::is_xpu_place(lod_tensors[0]->place())) { #if defined(PADDLE_WITH_XPU_BKCL) auto pre_in = pre_in_var->Get(); VariableVisitor::ShareDimsAndLoD(*pre_in_var, out_var); VariableVisitor::GetMutableTensor(out_var).mutable_data( out_var_handle->place(), pre_in.dtype()); auto out_p = out_var_handle->place(); int root_id = out_p.device; std::vector> all_reduce_calls; for (size_t i = 0; i < var_scopes.size(); ++i) { auto &p = in_places[i]; auto &lod_tensor = *lod_tensors[i]; int dev_id = p.device; auto &bkcl_ctx = bkcl_ctxs_->at(dev_id); void *buffer = const_cast(lod_tensor.data()); void *recvbuffer = nullptr; if (root_id == dev_id) { recvbuffer = out_var->GetMutable()->mutable_data( out_var_handle->place()); } int type = platform::ToBKCLDataType( framework::TransToProtoVarType(lod_tensor.dtype())); size_t numel = static_cast(lod_tensor.numel()); all_reduce_calls.emplace_back([buffer, recvbuffer, type, numel, root_id, &bkcl_ctx] { PADDLE_ENFORCE_EQ(bkcl_reduce(bkcl_ctx.comm(), buffer, recvbuffer, numel, static_cast(type), BKCL_ADD, root_id, nullptr), BKCL_SUCCESS, platform::errors::Unavailable( "bkcl_all_reduce failed")); }); } WaitInputVarGenerated(); this->RunAndRecordEvent([&] { PADDLE_ENFORCE_EQ( bkcl_group_start(), BKCL_SUCCESS, platform::errors::Unavailable("bkcl_group_start failed")); for (auto &call : all_reduce_calls) { call(); } PADDLE_ENFORCE_EQ( bkcl_group_end(), BKCL_SUCCESS, platform::errors::Unavailable("bkcl_group_end failed")); }); #else PADDLE_THROW( platform::errors::PreconditionNotMet("Not compiled with XPU.")); #endif } else { PADDLE_THROW(platform::errors::InvalidArgument( "The place of tensor should be CPUPlace, CUDAPlace or XPUPlace, but " "got %s.", lod_tensors[0]->place())); } } } template std::vector ReduceOpHandle::GetInputValues( const std::vector &in_var_handles, const std::vector &var_scopes) const { std::vector in_selected_rows; for (auto *in_handle : in_var_handles) { auto &in_sr = var_scopes.at(in_handle->scope_idx()) ->FindVar(in_handle->name()) ->Get(); in_selected_rows.emplace_back(&in_sr); } return in_selected_rows; } std::string ReduceOpHandle::Name() const { return "reduce"; } } // namespace details } // namespace framework } // namespace paddle