# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is definition of dataset class, which is high performance IO.""" import paddle from paddle.fluid.proto import data_feed_pb2 from google.protobuf import text_format import paddle.fluid.core as core __all__ = [] class DatasetBase(object): """ Base dataset class. """ def __init__(self): """ Init. """ # define class name here # to decide whether we need create in memory instance self.proto_desc = data_feed_pb2.DataFeedDesc() self.proto_desc.pipe_command = "cat" self.dataset = core.Dataset("MultiSlotDataset") self.thread_num = 1 self.filelist = [] self.use_ps_gpu = False self.psgpu = None def init(self, batch_size=1, thread_num=1, use_var=[], pipe_command="cat", input_type=0, fs_name="", fs_ugi="", download_cmd="cat"): """ should be called only once in user's python scripts to initialize setings of dataset instance. Normally, it is called by InMemoryDataset or QueueDataset. Args: batch_size(int): batch size. It will be effective during training. default is 1. thread_num(int): thread num, it is the num of readers. default is 1. use_var(list): list of variables. Variables which you will use. default is []. pipe_command(str): pipe command of current dataset. A pipe command is a UNIX pipeline command that can be used only. default is "cat" input_type(int): the input type of generated input. 0 is for one sample, 1 is for one batch. default is 0. fs_name(str): fs name. default is "". fs_ugi(str): fs ugi. default is "". download_cmd(str): customized download command. default is "cat" """ self._set_batch_size(batch_size) self._set_thread(thread_num) self._set_use_var(use_var) self._set_pipe_command(pipe_command) self._set_input_type(input_type) self._set_hdfs_config(fs_name, fs_ugi) self._set_download_cmd(download_cmd) def _set_pipe_command(self, pipe_command): """ Set pipe command of current dataset A pipe command is a UNIX pipeline command that can be used only Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.dataset.DatasetBase() dataset._set_pipe_command("python my_script.py") Args: pipe_command(str): pipe command """ self.proto_desc.pipe_command = pipe_command def _set_batch_size(self, batch_size): """ Set batch size. Will be effective during training Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.DatasetBase() dataset._set_batch_size(128) Args: batch_size(int): batch size """ self.proto_desc.batch_size = batch_size def _set_thread(self, thread_num): """ Set thread num, it is the num of readers. Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.DatasetBase() dataset._set_thread(12) Args: thread_num(int): thread num """ self.dataset.set_thread_num(thread_num) self.thread_num = thread_num def set_filelist(self, filelist): """ Set file list in current worker. The filelist is indicated by a list of file names (string). Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.DatasetBase() dataset.set_filelist(['a.txt', 'b.txt']) Args: filelist(list[str]): list of file names of inputs. """ self.dataset.set_filelist(filelist) self.filelist = filelist def _set_input_type(self, input_type): self.proto_desc.input_type = input_type def _set_uid_slot(self, uid_slot): """ Set user slot name. Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.DatasetBase() dataset._set_uid_slot('6048') Args: set_uid_slot(string): user slot name """ multi_slot = self.proto_desc.multi_slot_desc multi_slot.uid_slot = uid_slot def _set_use_var(self, var_list): """ Set Variables which you will use. Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.DatasetBase() dataset._set_use_var([data, label]) Args: var_list(list): variable list """ multi_slot = self.proto_desc.multi_slot_desc for var in var_list: slot_var = multi_slot.slots.add() slot_var.is_used = True slot_var.name = var.name if var.lod_level == 0: slot_var.is_dense = True slot_var.shape.extend(var.shape) if var.dtype == core.VarDesc.VarType.FP32: slot_var.type = "float" elif var.dtype == core.VarDesc.VarType.INT64: slot_var.type = "uint64" else: raise ValueError( "Currently, paddle.distributed.fleet.dataset only supports dtype=float32 and dtype=int64" ) def _set_hdfs_config(self, fs_name, fs_ugi): """ Set hdfs config: fs name ad ugi Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.DatasetBase() dataset._set_hdfs_config("my_fs_name", "my_fs_ugi") Args: fs_name(str): fs name fs_ugi(str): fs ugi """ self.dataset.set_hdfs_config(fs_name, fs_ugi) def _set_download_cmd(self, download_cmd): """ Set customized download cmd: download_cmd Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.DatasetBase() dataset._set_download_cmd("./read_from_afs") Args: download_cmd(str): customized download command """ self.dataset.set_download_cmd(download_cmd) def _prepare_to_run(self): """ Set data_feed_desc before load or shuffle, user no need to call this function. """ if self.thread_num > len(self.filelist): self.thread_num = len(self.filelist) self.dataset.set_thread_num(self.thread_num) self.dataset.set_data_feed_desc(self._desc()) self.dataset.create_readers() def _set_use_ps_gpu(self, use_ps_gpu): """ set use_ps_gpu flag Args: use_ps_gpu: bool """ self.use_ps_gpu = use_ps_gpu # if not defined heterps with paddle, users will not use psgpu if not core._is_compiled_with_heterps(): self.use_ps_gpu = 0 elif self.use_ps_gpu: self.psgpu = core.PSGPU() def _finish_to_run(self): self.dataset.destroy_readers() def _desc(self): """ Returns a protobuf message for this DataFeedDesc Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.DatasetBase() print(dataset._desc()) Returns: A string message """ return text_format.MessageToString(self.proto_desc) def _dynamic_adjust_before_train(self, thread_num): pass def _dynamic_adjust_after_train(self): pass def _check_use_var_with_data_generator(self, var_list, data_generator_class, test_file): """ Var consistency insepection of use_var_list and data_generator data. Examples: .. code-block:: python # required: skiptest import paddle from dataset_generator import CTRDataset dataset = paddle.distributed.fleet.DatasetBase() generator_class = CTRDataset() dataset._check_use_var_with_data_generator([data, label], generator_class, "data/part-00000") Args: var_list(list): variable list data_generator_class(class): data_generator class test_file(str): local test file path """ f = open(test_file, "r") var_len = len(var_list) while True: line = f.readline() if line: line_iter = data_generator_class.generate_sample(line) for user_parsed_line in line_iter(): data_gen_len = len(user_parsed_line) if var_len != data_gen_len: raise ValueError( "var length mismatch error: var_list = %s vs data_generator = %s" % (var_len, data_gen_len)) for i, ele in enumerate(user_parsed_line): if len(ele[1]) == 0: raise ValueError( "var length error: var %s's length in data_generator is 0" % ele[0]) if var_list[ i].dtype == core.VarDesc.VarType.FP32 and not all( isinstance(ele, float) for ele in ele[1]): raise TypeError( "var dtype mismatch error: var name = %s, var type in var_list = %s, while var in data_generator contains non-float value, which is %s \n" "Please check if order of var_list and data_generator are aligned. \n" "Please check if var's type in data_generator is correct." % (ele[0], "float", ele[1])) if (var_list[i].dtype == core.VarDesc.VarType.INT64 or var_list[i].dtype == core.VarDesc.VarType.INT32) and not all( isinstance(ele, int) for ele in ele[1]): raise TypeError( "var dtype mismatch error: var name = %s, var type in var_list = %s, while var in data_generator contains non-int value, which is %s \n" "Please check if order of var_list and data_generator are aligned. \n" "Please check if var's type in data_generator is correct." % (ele[0], "int", ele[1])) else: break f.close() class InMemoryDataset(DatasetBase): """ :api_attr: Static Graph It will load data into memory and shuffle data before training. Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() """ def __init__(self): """ Init. """ super(InMemoryDataset, self).__init__() self.proto_desc.name = "MultiSlotInMemoryDataFeed" self.fleet_send_batch_size = None self.is_user_set_queue_num = False self.queue_num = None self.parse_ins_id = False self.parse_content = False self.parse_logkey = False self.merge_by_sid = True self.enable_pv_merge = False self.merge_by_lineid = False self.fleet_send_sleep_seconds = None def _init_distributed_settings(self, **kwargs): """ :api_attr: Static Graph should be called only once in user's python scripts to initialize distributed-related setings of dataset instance Args: kwargs: Keyword arguments. Currently, we support following keys in **kwargs: merge_size(int): ins size to merge, if merge_size > 0, set merge by line id, instances of same line id will be merged after shuffle, you should parse line id in data generator. default is -1. parse_ins_id(bool): Set if Dataset need to parse ins_id. default is False. parse_content(bool): Set if Dataset need to parse content. default is False. fleet_send_batch_size(int): Set fleet send batch size in one rpc, default is 1024 fleet_send_sleep_seconds(int): Set fleet send sleep time, default is 0 fea_eval(bool): Set if Dataset need to do feature importance evaluation using slots shuffle. default is False. candidate_size(int): if fea_eval is set True, set the candidate size used in slots shuffle. Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=[]) dataset._init_distributed_settings( parse_ins_id=True, parse_content=True, fea_eval=True, candidate_size=10000) """ merge_size = kwargs.get("merge_size", -1) if merge_size > 0: self._set_merge_by_lineid(merge_size) parse_ins_id = kwargs.get("parse_ins_id", False) self._set_parse_ins_id(parse_ins_id) parse_content = kwargs.get("parse_content", False) self._set_parse_content(parse_content) fleet_send_batch_size = kwargs.get("fleet_send_batch_size", None) if fleet_send_batch_size: self._set_fleet_send_batch_size(fleet_send_batch_size) fleet_send_sleep_seconds = kwargs.get("fleet_send_sleep_seconds", None) if fleet_send_sleep_seconds: self._set_fleet_send_sleep_seconds(fleet_send_sleep_seconds) fea_eval = kwargs.get("fea_eval", False) if fea_eval: candidate_size = kwargs.get("candidate_size", 10000) self._set_fea_eval(candidate_size, True) def update_settings(self, **kwargs): """ :api_attr: Static Graph should be called in user's python scripts to update setings of dataset instance. Args: kwargs: Keyword arguments. Currently, we support following keys in **kwargs, including single node settings and advanced distributed related settings: batch_size(int): batch size. It will be effective during training. default is 1. thread_num(int): thread num, it is the num of readers. default is 1. use_var(list): list of variables. Variables which you will use. default is []. input_type(int): the input type of generated input. 0 is for one sample, 1 is for one batch. default is 0. fs_name(str): fs name. default is "". fs_ugi(str): fs ugi. default is "". pipe_command(str): pipe command of current dataset. A pipe command is a UNIX pipeline command that can be used only. default is "cat" download_cmd(str): customized download command. default is "cat" data_feed_type(str): data feed type used in c++ code. default is "MultiSlotInMemoryDataFeed". queue_num(int): Dataset output queue num, training threads get data from queues. default is-1, which is set same as thread number in c++. merge_size(int): ins size to merge, if merge_size > 0, set merge by line id, instances of same line id will be merged after shuffle, you should parse line id in data generator. default is -1. parse_ins_id(bool): Set if Dataset need to parse ins_id. default is False. parse_content(bool): Set if Dataset need to parse content. default is False. fleet_send_batch_size(int): Set fleet send batch size in one rpc, default is 1024 fleet_send_sleep_seconds(int): Set fleet send sleep time, default is 0 fea_eval(bool): Set if Dataset need to do feature importance evaluation using slots shuffle. default is False. candidate_size(int): if fea_eval is set True, set the candidate size used in slots shuffle. Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=[]) dataset._init_distributed_settings( parse_ins_id=True, parse_content=True, fea_eval=True, candidate_size=10000) dataset.update_settings(batch_size=2) """ for key in kwargs: if key == "pipe_command": self._set_pipe_command(kwargs[key]) elif key == "batch_size": self._set_batch_size(kwargs[key]) elif key == "thread_num": self._set_thread(kwargs[key]) elif key == "use_var": self._set_use_var(kwargs[key]) elif key == "input_type": self._set_input_type(kwargs[key]) elif key == "fs_name" and "fs_ugi" in kwargs: self._set_hdfs_config(kwargs[key], kwargs["fs_ugi"]) elif key == "download_cmd": self._set_download_cmd(kwargs[key]) elif key == "merge_size" and kwargs.get("merge_size", -1) > 0: self._set_merge_by_lineid(kwargs[key]) elif key == "parse_ins_id": self._set_parse_ins_id(kwargs[key]) elif key == "parse_content": self._set_parse_content(kwargs[key]) elif key == "fleet_send_batch_size": self._set_fleet_send_batch_size(kwargs[key]) elif key == "fleet_send_sleep_seconds": self._set_fleet_send_sleep_seconds(kwargs[key]) elif key == "fea_eval" and kwargs[key] == True: candidate_size = kwargs.get("candidate_size", 10000) self._set_fea_eval(candidate_size, True) def init(self, **kwargs): """ :api_attr: Static Graph should be called only once in user's python scripts to initialize setings of dataset instance Args: kwargs: Keyword arguments. Currently, we support following keys in **kwargs: batch_size(int): batch size. It will be effective during training. default is 1. thread_num(int): thread num, it is the num of readers. default is 1. use_var(list): list of variables. Variables which you will use. default is []. input_type(int): the input type of generated input. 0 is for one sample, 1 is for one batch. default is 0. fs_name(str): fs name. default is "". fs_ugi(str): fs ugi. default is "". pipe_command(str): pipe command of current dataset. A pipe command is a UNIX pipeline command that can be used only. default is "cat" download_cmd(str): customized download command. default is "cat" data_feed_type(str): data feed type used in c++ code. default is "MultiSlotInMemoryDataFeed". queue_num(int): Dataset output queue num, training threads get data from queues. default is -1, which is set same as thread number in c++. Examples: .. code-block:: python import paddle import os paddle.enable_static() with open("test_queue_dataset_run_a.txt", "w") as f: data = "2 1 2 2 5 4 2 2 7 2 1 3" f.write(data) with open("test_queue_dataset_run_b.txt", "w") as f: data = "2 1 2 2 5 4 2 2 7 2 1 3" f.write(data) slots = ["slot1", "slot2", "slot3", "slot4"] slots_vars = [] for slot in slots: var = paddle.static.data( name=slot, shape=[None, 1], dtype="int64", lod_level=1) slots_vars.append(var) dataset = paddle.distributed.InMemoryDataset() dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=slots_vars) dataset.set_filelist( ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]) dataset.load_into_memory() place = paddle.CPUPlace() exe = paddle.static.Executor(place) startup_program = paddle.static.Program() main_program = paddle.static.Program() exe.run(startup_program) exe.train_from_dataset(main_program, dataset) os.remove("./test_queue_dataset_run_a.txt") os.remove("./test_queue_dataset_run_b.txt") """ batch_size = kwargs.get("batch_size", 1) thread_num = kwargs.get("thread_num", 1) use_var = kwargs.get("use_var", []) input_type = kwargs.get("input_type", 0) fs_name = kwargs.get("fs_name", "") fs_ugi = kwargs.get("fs_ugi", "") pipe_command = kwargs.get("pipe_command", "cat") download_cmd = kwargs.get("download_cmd", "cat") if self.use_ps_gpu: data_feed_type = "SlotRecordInMemoryDataFeed" else: data_feed_type = "MultiSlotInMemoryDataFeed" self._set_feed_type(data_feed_type) super(InMemoryDataset, self).init(batch_size=batch_size, thread_num=thread_num, use_var=use_var, pipe_command=pipe_command, input_type=input_type, fs_name=fs_name, fs_ugi=fs_ugi, download_cmd=download_cmd) if kwargs.get("queue_num", -1) > 0: queue_num = kwargs.get("queue_num", -1) self._set_queue_num(queue_num) def _set_feed_type(self, data_feed_type): """ Set data_feed_desc """ self.proto_desc.name = data_feed_type if (self.proto_desc.name == "SlotRecordInMemoryDataFeed"): self.dataset = core.Dataset("SlotRecordDataset") def _prepare_to_run(self): """ Set data_feed_desc before load or shuffle, user no need to call this function. """ if self.thread_num <= 0: self.thread_num = 1 self.dataset.set_thread_num(self.thread_num) if self.queue_num is None: self.queue_num = self.thread_num self.dataset.set_queue_num(self.queue_num) self.dataset.set_parse_ins_id(self.parse_ins_id) self.dataset.set_parse_content(self.parse_content) self.dataset.set_parse_logkey(self.parse_logkey) self.dataset.set_merge_by_sid(self.merge_by_sid) self.dataset.set_enable_pv_merge(self.enable_pv_merge) self.dataset.set_data_feed_desc(self._desc()) self.dataset.create_channel() self.dataset.create_readers() def _dynamic_adjust_before_train(self, thread_num): if not self.is_user_set_queue_num: if self.use_ps_gpu: self.dataset.dynamic_adjust_channel_num(thread_num, True) else: self.dataset.dynamic_adjust_channel_num(thread_num, False) self.dataset.dynamic_adjust_readers_num(thread_num) def _dynamic_adjust_after_train(self): if not self.is_user_set_queue_num: if self.use_ps_gpu: self.dataset.dynamic_adjust_channel_num(self.thread_num, True) else: self.dataset.dynamic_adjust_channel_num(self.thread_num, False) self.dataset.dynamic_adjust_readers_num(self.thread_num) def _set_queue_num(self, queue_num): """ Set Dataset output queue num, training threads get data from queues Args: queue_num(int): dataset output queue num Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() dataset._set_queue_num(12) """ self.is_user_set_queue_num = True self.queue_num = queue_num def _set_parse_ins_id(self, parse_ins_id): """ Set if Dataset need to parse insid Args: parse_ins_id(bool): if parse ins_id or not Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() dataset._set_parse_ins_id(True) """ self.parse_ins_id = parse_ins_id def _set_parse_content(self, parse_content): """ Set if Dataset need to parse content Args: parse_content(bool): if parse content or not Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() dataset._set_parse_content(True) """ self.parse_content = parse_content def _set_fleet_send_batch_size(self, fleet_send_batch_size=1024): """ Set fleet send batch size, default is 1024 Args: fleet_send_batch_size(int): fleet send batch size Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() dataset._set_fleet_send_batch_size(800) """ self.fleet_send_batch_size = fleet_send_batch_size def _set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0): """ Set fleet send sleep time, default is 0 Args: fleet_send_sleep_seconds(int): fleet send sleep time Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() dataset._set_fleet_send_sleep_seconds(2) """ self.fleet_send_sleep_seconds = fleet_send_sleep_seconds def _set_merge_by_lineid(self, merge_size=2): """ Set merge by line id, instances of same line id will be merged after shuffle, you should parse line id in data generator. Args: merge_size(int): ins size to merge. default is 2. Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() dataset._set_merge_by_lineid() """ self.dataset.set_merge_by_lineid(merge_size) self.merge_by_lineid = True self.parse_ins_id = True def _set_shuffle_by_uid(self, enable_shuffle_uid): """ Set if Dataset need to shuffle by uid. Args: set_shuffle_by_uid(bool): if shuffle according to uid or not Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() dataset._set_shuffle_by_uid(True) """ self.dataset.set_shuffle_by_uid(enable_shuffle_uid) def _set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num): self.dataset.set_generate_unique_feasigns(generate_uni_feasigns) self.gen_uni_feasigns = generate_uni_feasigns self.local_shard_num = shard_num def _generate_local_tables_unlock(self, table_id, fea_dim, read_thread_num, consume_thread_num, shard_num): self.dataset.generate_local_tables_unlock(table_id, fea_dim, read_thread_num, consume_thread_num, shard_num) def set_date(self, date): """ :api_attr: Static Graph Set training date for pull sparse parameters, saving and loading model. Only used in psgpu Args: date(str): training date(format : YYMMDD). eg.20211111 Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() slots = ["slot1", "slot2", "slot3", "slot4"] slots_vars = [] for slot in slots: var = paddle.static.data( name=slot, shape=[None, 1], dtype="int64", lod_level=1) slots_vars.append(var) dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=slots_vars) dataset.set_date("20211111") """ year = int(date[:4]) month = int(date[4:6]) day = int(date[6:]) if self.use_ps_gpu and core._is_compiled_with_heterps(): self.psgpu.set_date(year, month, day) def tdm_sample(self, tree_name, tree_path, tdm_layer_counts, start_sample_layer, with_hierachy, seed, id_slot): self.dataset.tdm_sample(tree_name, tree_path, tdm_layer_counts, start_sample_layer, with_hierachy, seed, id_slot) def load_into_memory(self, is_shuffle=False): """ :api_attr: Static Graph Load data into memory Args: is_shuffle(bool): whether to use local shuffle, default is False Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() slots = ["slot1", "slot2", "slot3", "slot4"] slots_vars = [] for slot in slots: var = paddle.static.data( name=slot, shape=[None, 1], dtype="int64", lod_level=1) slots_vars.append(var) dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=slots_vars) filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() """ self._prepare_to_run() if not self.use_ps_gpu: self.dataset.load_into_memory() elif core._is_compiled_with_heterps(): self.psgpu.set_dataset(self.dataset) self.psgpu.load_into_memory(is_shuffle) def preload_into_memory(self, thread_num=None): """ :api_attr: Static Graph Load data into memory in async mode Args: thread_num(int): preload thread num Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() slots = ["slot1", "slot2", "slot3", "slot4"] slots_vars = [] for slot in slots: var = paddle.static.data( name=slot, shape=[None, 1], dtype="int64", lod_level=1) slots_vars.append(var) dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=slots_vars) filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.preload_into_memory() dataset.wait_preload_done() """ self._prepare_to_run() if thread_num is None: thread_num = self.thread_num self.dataset.set_preload_thread_num(thread_num) self.dataset.create_preload_readers() self.dataset.preload_into_memory() def wait_preload_done(self): """ :api_attr: Static Graph Wait preload_into_memory done Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() slots = ["slot1", "slot2", "slot3", "slot4"] slots_vars = [] for slot in slots: var = paddle.static.data( name=slot, shape=[None, 1], dtype="int64", lod_level=1) slots_vars.append(var) dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=slots_vars) filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.preload_into_memory() dataset.wait_preload_done() """ self.dataset.wait_preload_done() self.dataset.destroy_preload_readers() def local_shuffle(self): """ :api_attr: Static Graph Local shuffle Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() slots = ["slot1", "slot2", "slot3", "slot4"] slots_vars = [] for slot in slots: var = paddle.static.data( name=slot, shape=[None, 1], dtype="int64", lod_level=1) slots_vars.append(var) dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=slots_vars) filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.local_shuffle() """ self.dataset.local_shuffle() def global_shuffle(self, fleet=None, thread_num=12): """ :api_attr: Static Graph Global shuffle. Global shuffle can be used only in distributed mode. i.e. multiple processes on single machine or multiple machines training together. If you run in distributed mode, you should pass fleet instead of None. Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() slots = ["slot1", "slot2", "slot3", "slot4"] slots_vars = [] for slot in slots: var = paddle.static.data( name=slot, shape=[None, 1], dtype="int64", lod_level=1) slots_vars.append(var) dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=slots_vars) filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.global_shuffle() Args: fleet(Fleet): fleet singleton. Default None. thread_num(int): shuffle thread num. Default is 12. """ trainer_num = 1 if fleet is not None: fleet._role_maker.barrier_worker() trainer_num = fleet.worker_num() if self.fleet_send_batch_size is None: self.fleet_send_batch_size = 1024 if self.fleet_send_sleep_seconds is None: self.fleet_send_sleep_seconds = 0 self.dataset.register_client2client_msg_handler() self.dataset.set_trainer_num(trainer_num) self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size) self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds) if fleet is not None: fleet._role_maker.barrier_worker() self.dataset.global_shuffle(thread_num) if fleet is not None: fleet._role_maker.barrier_worker() if self.merge_by_lineid: self.dataset.merge_by_lineid() if fleet is not None: fleet._role_maker.barrier_worker() def release_memory(self): """ :api_attr: Static Graph Release InMemoryDataset memory data, when data will not be used again. Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() slots = ["slot1", "slot2", "slot3", "slot4"] slots_vars = [] for slot in slots: var = paddle.static.data( name=slot, shape=[None, 1], dtype="int64", lod_level=1) slots_vars.append(var) dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=slots_vars) filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.global_shuffle() exe = paddle.static.Executor(paddle.CPUPlace()) startup_program = paddle.static.Program() main_program = paddle.static.Program() exe.run(startup_program) exe.train_from_dataset(main_program, dataset) dataset.release_memory() """ self.dataset.release_memory() def get_memory_data_size(self, fleet=None): """ :api_attr: Static Graph Get memory data size, user can call this function to know the num of ins in all workers after load into memory. Note: This function may cause bad performance, because it has barrier Args: fleet(Fleet): Fleet Object. Returns: The size of memory data. Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() slots = ["slot1", "slot2", "slot3", "slot4"] slots_vars = [] for slot in slots: var = paddle.static.data( name=slot, shape=[None, 1], dtype="int64", lod_level=1) slots_vars.append(var) dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=slots_vars) filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() print dataset.get_memory_data_size() """ import numpy as np local_data_size = self.dataset.get_memory_data_size() local_data_size = np.array([local_data_size]) if fleet is not None: global_data_size = local_data_size * 0 fleet._role_maker.all_reduce_worker(local_data_size, global_data_size) return global_data_size[0] return local_data_size[0] def get_shuffle_data_size(self, fleet=None): """ :api_attr: Static Graph Get shuffle data size, user can call this function to know the num of ins in all workers after local/global shuffle. Note: This function may cause bad performance to local shuffle, because it has barrier. It does not affect global shuffle. Args: fleet(Fleet): Fleet Object. Returns: The size of shuffle data. Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() dataset = paddle.distributed.InMemoryDataset() slots = ["slot1", "slot2", "slot3", "slot4"] slots_vars = [] for slot in slots: var = paddle.static.data( name=slot, shape=[None, 1], dtype="int64", lod_level=1) slots_vars.append(var) dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=slots_vars) filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.global_shuffle() print dataset.get_shuffle_data_size() """ import numpy as np local_data_size = self.dataset.get_shuffle_data_size() local_data_size = np.array([local_data_size]) if fleet is not None: global_data_size = local_data_size * 0 fleet._role_maker.all_reduce_worker(local_data_size, global_data_size) return global_data_size[0] return local_data_size[0] def _set_fea_eval(self, record_candidate_size, fea_eval=True): """ set fea eval mode for slots shuffle to debug the importance level of slots(features), fea_eval need to be set True for slots shuffle. Args: record_candidate_size(int): size of instances candidate to shuffle one slot fea_eval(bool): whether enable fea eval mode to enable slots shuffle. default is True. Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() dataset._set_fea_eval(1000000, True) """ if fea_eval: self.dataset.set_fea_eval(fea_eval, record_candidate_size) self.fea_eval = fea_eval def slots_shuffle(self, slots): """ Slots Shuffle Slots Shuffle is a shuffle method in slots level, which is usually used in sparse feature with large scale of instances. To compare the metric, i.e. auc while doing slots shuffle on one or several slots with baseline to evaluate the importance level of slots(features). Args: slots(list[string]): the set of slots(string) to do slots shuffle. Examples: .. code-block:: python import paddle paddle.enable_static() dataset = paddle.distributed.InMemoryDataset() dataset._init_distributed_settings(fea_eval=True) slots = ["slot1", "slot2", "slot3", "slot4"] slots_vars = [] for slot in slots: var = paddle.static.data( name=slot, shape=[None, 1], dtype="int64", lod_level=1) slots_vars.append(var) dataset.init( batch_size=1, thread_num=2, input_type=1, pipe_command="cat", use_var=slots_vars) filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.slots_shuffle(['slot1']) """ if self.fea_eval: slots_set = set(slots) self.dataset.slots_shuffle(slots_set) class QueueDataset(DatasetBase): """ :api_attr: Static Graph QueueDataset, it will process data streamly. Examples: .. code-block:: python import paddle dataset = paddle.distributed.QueueDataset() """ def __init__(self): """ Initialize QueueDataset """ super(QueueDataset, self).__init__() self.proto_desc.name = "MultiSlotDataFeed" def init(self, **kwargs): """ :api_attr: Static Graph should be called only once in user's python scripts to initialize setings of dataset instance """ super(QueueDataset, self).init(**kwargs) def _prepare_to_run(self): """ Set data_feed_desc/thread num/filelist before run, user no need to call this function. """ if self.thread_num > len(self.filelist): self.thread_num = len(self.filelist) if self.thread_num == 0: self.thread_num = 1 self.dataset.set_thread_num(self.thread_num) self.dataset.set_filelist(self.filelist) self.dataset.set_data_feed_desc(self._desc()) self.dataset.create_readers() class FileInstantDataset(DatasetBase): """ FileInstantDataset, it will process data streamly. Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.FileInstantDataset() """ def __init__(self): """ Initialize FileInstantDataset """ super(FileInstantDataset, self).__init__() self.proto_desc.name = "MultiSlotFileInstantDataFeed" def init(self, **kwargs): """ should be called only once in user's python scripts to initialize setings of dataset instance """ super(FileInstantDataset, self).init(**kwargs) class BoxPSDataset(InMemoryDataset): """ BoxPSDataset: derived from InMemoryDataset. Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() """ def __init__(self): """ Initialize BoxPSDataset """ super(BoxPSDataset, self).__init__() self.boxps = core.BoxPS(self.dataset) self.proto_desc.name = "PaddleBoxDataFeed" def init(self, **kwargs): """ should be called only once in user's python scripts to initialize setings of dataset instance """ super(BoxPSDataset, self).init(**kwargs) rank_offset = kwargs.get("rank_offset", "") self._set_rank_offset(rank_offset) pv_batch_size = kwargs.get("pv_batch_size", 1) self._set_pv_batch_size(pv_batch_size) parse_logkey = kwargs.get("parse_logkey", False) self._set_parse_logkey(parse_logkey) merge_by_sid = kwargs.get("merge_by_sid", False) self._set_merge_by_sid(merge_by_sid) enable_pv_merge = kwargs.get("enable_pv_merge", False) self._set_enable_pv_merge(enable_pv_merge) def _set_rank_offset(self, rank_offset): """ Set rank_offset for merge_pv. It set the message of Pv. Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() dataset._set_rank_offset("rank_offset") Args: rank_offset(str): rank_offset's name """ self.proto_desc.rank_offset = rank_offset def _set_pv_batch_size(self, pv_batch_size): """ Set pv batch size. It will be effective during enable_pv_merge Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() dataset._set_pv_batch_size(128) Args: pv_batch_size(int): pv batch size """ self.proto_desc.pv_batch_size = pv_batch_size def _set_parse_logkey(self, parse_logkey): """ Set if Dataset need to parse logkey Args: parse_content(bool): if parse logkey or not Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() dataset._set_parse_logkey(True) """ self.parse_logkey = parse_logkey def _set_merge_by_sid(self, merge_by_sid): """ Set if Dataset need to merge sid. If not, one ins means one Pv. Args: merge_by_sid(bool): if merge sid or not Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() dataset._set_merge_by_sid(True) """ self.merge_by_sid = merge_by_sid def _set_enable_pv_merge(self, enable_pv_merge): """ Set if Dataset need to merge pv. Args: enable_pv_merge(bool): if enable_pv_merge or not Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() dataset._set_enable_pv_merge(True) """ self.enable_pv_merge = enable_pv_merge def set_date(self, date): """ Workaround for date """ year = int(date[:4]) month = int(date[4:6]) day = int(date[6:]) self.boxps.set_date(year, month, day) def begin_pass(self): """ Begin Pass Notify BoxPS to load sparse parameters of next pass to GPU Memory Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() dataset.begin_pass() """ self.boxps.begin_pass() def end_pass(self, need_save_delta): """ End Pass Notify BoxPS that current pass ended Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() dataset.end_pass(True) """ self.boxps.end_pass(need_save_delta) def wait_preload_done(self): """ Wait async preload done Wait Until Feed Pass Done Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.preload_into_memory() dataset.wait_preload_done() """ self.boxps.wait_feed_pass_done() def load_into_memory(self): """ Load next pass into memory and notify boxps to fetch its emb from SSD Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() """ self._prepare_to_run() self.boxps.load_into_memory() def preload_into_memory(self): """ Begin async preload next pass while current pass may be training Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.preload_into_memory() """ self._prepare_to_run() self.boxps.preload_into_memory() def _dynamic_adjust_before_train(self, thread_num): if not self.is_user_set_queue_num: self.dataset.dynamic_adjust_channel_num(thread_num, True) self.dataset.dynamic_adjust_readers_num(thread_num) def _dynamic_adjust_after_train(self): pass def slots_shuffle(self, slots): """ Slots Shuffle Slots Shuffle is a shuffle method in slots level, which is usually used in sparse feature with large scale of instances. To compare the metric, i.e. auc while doing slots shuffle on one or several slots with baseline to evaluate the importance level of slots(features). Args: slots(list[string]): the set of slots(string) to do slots shuffle. Examples: import paddle dataset = paddle.distributed.fleet.BoxPSDataset() dataset.set_merge_by_lineid() #suppose there is a slot 0 dataset.slots_shuffle(['0']) """ slots_set = set(slots) self.boxps.slots_shuffle(slots_set) def set_current_phase(self, current_phase): """ Set current phase in train. It is useful for untest. current_phase : 1 for join, 0 for update. Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.set_current_phase(1) """ self.dataset.set_current_phase(current_phase) def get_pv_data_size(self): """ Get memory data size of Pv, user can call this function to know the pv num of ins in all workers after load into memory. Note: This function may cause bad performance, because it has barrier Returns: The size of memory pv data. Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() print dataset.get_pv_data_size() """ return self.dataset.get_pv_data_size() def preprocess_instance(self): """ Merge pv instance and convey it from input_channel to input_pv_channel. It will be effective when enable_pv_merge_ is True. Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.preprocess_instance() """ self.dataset.preprocess_instance() def postprocess_instance(self): """ Divide pv instance and convey it to input_channel. Examples: .. code-block:: python import paddle dataset = paddle.distributed.fleet.BoxPSDataset() filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.preprocess_instance() exe.train_from_dataset(dataset) dataset.postprocess_instance() """ self.dataset.postprocess_instance()