// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/eager/backward.h" #include #include "paddle/fluid/eager/autograd_meta.h" #include "paddle/fluid/eager/grad_node_info.h" #include "paddle/fluid/eager/grad_tensor_holder.h" #include "paddle/fluid/eager/utils.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/errors.h" #include "glog/logging.h" namespace egr { std::unordered_map getInDegreeMap( const std::queue& init_queue) { // Calculate in_degree for each node // We can completely remove this pass, if in_degree were set during forward // pass std::unordered_map node_in_degree_map; // Copy nodes std::queue queue = init_queue; std::unordered_set visited; // Visit each node exactly once in any order while (!queue.empty()) { GradNodeBase* node = queue.front(); queue.pop(); if (visited.count(node)) { continue; } visited.insert(node); // Find and append next nodes const std::vector>& edges = node->GetEdges(); for (const auto& edge_list : edges) { for (const Edge& edge : edge_list) { GradNodeBase* next_node = edge.GetMutableGradNode().get(); // Next node could be nullptr if it is leaf tensor with no // AccumulationNode attached // Or it could also originated from dispensable inputs if (!next_node) continue; // Update in_degree if (!node_in_degree_map.count(next_node)) node_in_degree_map[next_node] = 0; node_in_degree_map[next_node]++; queue.push(next_node); } } } return node_in_degree_map; } void RunBackward(const std::vector& tensors, const std::vector& grad_tensors, bool retain_graph) { VLOG(6) << "Start Backward"; // *Gradient Hook should happen at node-level // *Inplace version check should perform at node-level // *Cross-batch accumulation happens at forward pass /* --- Initialization --- */ // 1. Init queue with starting nodes // 2. Prepare initial input buffers std::queue queue; std::unordered_map> node_input_buffers_dict; for (size_t i = 0; i < tensors.size(); i++) { const paddle::experimental::Tensor& tensor = tensors[i]; AutogradMeta* auto_grad_meta = EagerUtils::unsafe_autograd_meta(tensor); // Get grad input info from target tensors auto input_info = auto_grad_meta->OutRankInfo(); VLOG(2) << "Out Rank of Tensor is slot: " << input_info.first << ", rank: " << input_info.second; // Get target GradNodeBase from target tensors auto shared_grad_node = auto_grad_meta->GetMutableGradNode(); if (shared_grad_node == nullptr || shared_grad_node.get() == nullptr || auto_grad_meta->StopGradient()) { VLOG(3) << "Skip auto grad since there is no grad op for var or loss is " "stop_gradient=True: " << tensor.name(); continue; } GradNodeBase* grad_node = shared_grad_node.get(); // Prepare GradTensorHolder if (!node_input_buffers_dict.count(grad_node)) { VLOG(6) << "Create Value for grad input tensor " << i; node_input_buffers_dict[grad_node] = std::make_unique(grad_node->InputMeta()); } if (grad_tensors.size() > 0) { PADDLE_ENFORCE( grad_tensors.size() == tensors.size(), paddle::platform::errors::Fatal( "Detected size mismatch between tensors and grad_tensors" "grad_tensors should either have " "size = 0 or same size as tensors")); // Feed given tensor if it's provided VLOG(6) << "Fill grad input tensor " << i << "with give grad tensor"; node_input_buffers_dict[grad_node]->add( input_info.first, input_info.second, grad_tensors[i]); } else { VLOG(6) << "Fill grad input tensor " << i << " with 1.0"; // Initialize tensor with 1.0 // Forward Tensor "tensor" is passed to indicate tensortype, datatype and // dims // GradTensorHolder will initialize another tensor with same tensortype, // datatype and dims but filled with 1.0 node_input_buffers_dict[grad_node]->add( input_info.first, input_info.second, tensor, true /*fill_one=true*/); } // Prepare queue queue.push(grad_node); } VLOG(6) << "Update In degree Map for backward"; // 3. Compute in_degree for each node std::unordered_map node_in_degree_map = getInDegreeMap(queue); /* --- Topological Visit --- */ // 1. Pop queue // 2. Run node // |- node(grads) // |- Prepare for next node // 3. Update queue VLOG(6) << "Run Backward"; while (!queue.empty()) { GradNodeBase* node = queue.front(); queue.pop(); // Run node: This is where Hook happens PADDLE_ENFORCE( node_input_buffers_dict.count(node), paddle::platform::errors::Fatal( "Unable to find next node in the InputBuufer" "Trying to run Node without configuring its GradTensorHolder")); std::unique_ptr node_input_buffer = std::move(node_input_buffers_dict[node]); VLOG(6) << "Run Backward Kernel with input_buffer"; // Run Pre Backward Node and get outputs std::vector> grad_output_tensors = (*node)(node_input_buffer->Buffers()); // TODO(jiabin): Should we erase it or find a more efficient way. node_input_buffers_dict.erase(node); // Prepare GradTensorHolder for next node const std::vector>& edges = node->GetEdges(); PADDLE_ENFORCE(edges.size() == grad_output_tensors.size() || edges.empty(), paddle::platform::errors::Fatal( "Number of edges should be either empty ( for leaf node " ") or the same as number of output grad tensors, but we " "got edges size is: %d, grad_output size is: %d", edges.size(), grad_output_tensors.size())); for (size_t i = 0; i < edges.size(); i++) { for (size_t j = 0; j < edges[i].size(); j++) { const Edge& edge = edges[i][j]; auto edge_rank = edge.GetEdgeRankInfo(); // Since we make edge has as same rank as bwd outputs, we indexing them // with // the same rank(i, j) auto next_node_shared = edge.GetMutableGradNode(); // Next node could be nullptr if it is leaf tensor with no // AccumulationNode attached // Or it could also originated from dispensable inputs if (!next_node_shared || !next_node_shared.get() || grad_output_tensors[i].empty()) { continue; } PADDLE_ENFORCE_LT( j, grad_output_tensors[i].size(), paddle::platform::errors::Fatal( "Rank of grad_output_tensors should be less than " "grad_output_tensors[i].size(), which is: %d. This error may " "indicate autoprune or autograd api error. ", grad_output_tensors.size())); paddle::experimental::Tensor& grad_output_tensor = grad_output_tensors[i][j]; if ((!grad_output_tensor.defined() || !grad_output_tensor.initialized())) { VLOG(6) << "We get grad_output_tensor with slot: " << i << ", rank: " << j << " as uninitialized or undefined in both tensor and variable"; } VLOG(6) << "Get Edge and grad_output_tensor with slot: " << i << ", rank: " << j << " 's name is: " << grad_output_tensor.name(); auto* next_node = next_node_shared.get(); if (!node_input_buffers_dict.count(next_node)) { node_input_buffers_dict[next_node] = std::make_unique(next_node->InputMeta()); } VLOG(6) << "Sum grad inputs for edge slot: " << edge_rank.first << ", rank: " << edge_rank.second; node_input_buffers_dict[next_node]->add( edge_rank.first, edge_rank.second, grad_output_tensor); // Update queue node_in_degree_map[next_node]--; PADDLE_ENFORCE(node_in_degree_map[next_node] >= 0, paddle::platform::errors::Fatal( "Detected in-degree value smaller than zero." "Node's in-degree cannot be negative")); if (node_in_degree_map[next_node] == 0) { queue.emplace(std::move(next_node)); } } } } } } // namespace egr