/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/backends/gpu/gpu_info.h" #include "paddle/phi/backends/gpu/gpu_launch_config.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/funcs/pooling.h" #include "paddle/phi/kernels/funcs/sparse/convolution.h" #include "paddle/phi/kernels/sparse/sparse_pool_grad_kernel.h" namespace phi { namespace sparse { template __global__ void MaxPoolGradCudaKernel(const T* in_features_ptr, const T* out_features_ptr, const T* out_grad_ptr, const int* rulebook_ptr, const int n, const int rulebook_len, const int channels, T* x_grad_ptr) { phi::funcs::MaxPoolGrad grad_functor; CUDA_KERNEL_LOOP_TYPE(i, n * channels, int64_t) { int real_i = i / channels; int c = i - real_i * channels; int in_i = rulebook_ptr[real_i]; int out_i = rulebook_ptr[real_i + rulebook_len]; grad_functor.compute(in_features_ptr[in_i * channels + c], out_features_ptr[out_i * channels + c], out_grad_ptr[out_i * channels + c], 1, &x_grad_ptr[in_i * channels + c]); } } template void MaxPoolGradKernel(const Context& dev_ctx, const SparseCooTensor& x, const DenseTensor& rulebook, const SparseCooTensor& out, const DenseTensor& out_grad, const std::vector& kernel_sizes, DenseTensor* x_grad) { int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2]; const int in_channels = x.dims()[4]; int rulebook_len = rulebook.dims()[1]; const int* rulebook_ptr = rulebook.data(); std::vector offsets(kernel_size + 1), counter(kernel_size, 0), h_counter(kernel_size); phi::backends::gpu::GpuMemcpyAsync(&h_counter[0], rulebook_ptr, rulebook_len * sizeof(int), #ifdef PADDLE_WITH_HIP hipMemcpyDeviceToHost, #else cudaMemcpyDeviceToHost, #endif dev_ctx.stream()); dev_ctx.Wait(); for (int i = 0; i < rulebook_len; i++) { counter[h_counter[i]] += 1; } phi::funcs::sparse::PrefixSum(&counter[0], &offsets[0], kernel_size); const T* in_features_ptr = x.non_zero_elements().data(); const T* out_features_ptr = out.non_zero_elements().data(); const T* out_grad_ptr = out_grad.data(); T* x_grad_ptr = x_grad->data(); phi::funcs::SetConstant set_zero; set_zero(dev_ctx, x_grad, static_cast(0.0f)); for (int i = 0; i < kernel_size; i++) { if (counter[i] <= 0) { continue; } auto config = phi::backends::gpu::GetGpuLaunchConfig1D( dev_ctx, counter[i] * in_channels, 1); MaxPoolGradCudaKernel<<>>( in_features_ptr, out_features_ptr, out_grad_ptr, rulebook_ptr + offsets[i] + rulebook_len, counter[i], rulebook_len, in_channels, x_grad_ptr); } } } // namespace sparse } // namespace phi PD_REGISTER_KERNEL(sparse_maxpool_grad, GPU, ALL_LAYOUT, phi::sparse::MaxPoolGradKernel, float, double) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); }