// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/kthvalue_grad_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/copy_kernel.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { template static void kthvalueAssign(const Type& input_height, const Type& input_width, const int& input_dim, const DenseTensor* input, const DenseTensor* indices, T* output_data) { #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (Type i = 0; i < input_height; ++i) { if (input_dim == 1) { auto e_input = EigenVector::Flatten(*input); auto e_indices = EigenVector::Flatten(*indices); output_data[i * input_width + e_indices(0)] = e_input(0); } else { auto e_input = EigenMatrix::Reshape(*input, input_dim - 1); auto e_indices = EigenMatrix::Reshape(*indices, input_dim - 1); output_data[i * input_width + e_indices(i, 0)] = e_input(i, 0); } } } template void KthvalueGradKernel(const Context& dev_ctx, const DenseTensor& d_out, const DenseTensor& x, const DenseTensor& indices, int k, int axis, bool keepdim, DenseTensor* d_x) { auto in_dims = x.dims(); auto out_dims = indices.dims(); axis = (axis < 0) ? (in_dims.size() + axis) : axis; if (!keepdim) { std::vector tmp_out_shape; for (int i = 0; i < axis; i++) { tmp_out_shape.emplace_back(out_dims[i]); } tmp_out_shape.emplace_back(1); for (int i = axis + 1; i < in_dims.size(); i++) { tmp_out_shape.emplace_back(out_dims[i - 1]); } out_dims = phi::make_ddim(tmp_out_shape); } T* x_grad_data = dev_ctx.template Alloc(d_x); if (axis == in_dims.size() - 1) { const int64_t input_height = phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1)); const int64_t input_width = in_dims[in_dims.size() - 1]; memset(x_grad_data, 0, d_x->numel() * sizeof(T)); if (keepdim) { kthvalueAssign(input_height, input_width, in_dims.size(), &d_out, &indices, x_grad_data); } else { DenseTensor out_grad_tmp, indices_tmp; out_grad_tmp.Resize(d_out.dims()); indices_tmp.Resize(indices.dims()); dev_ctx.template Alloc(&out_grad_tmp); dev_ctx.template Alloc(&indices_tmp); Copy(dev_ctx, d_out, dev_ctx.GetPlace(), false, &out_grad_tmp); Copy(dev_ctx, indices, dev_ctx.GetPlace(), false, &indices_tmp); out_grad_tmp.Resize(out_dims); indices_tmp.Resize(out_dims); kthvalueAssign(input_height, input_width, in_dims.size(), &out_grad_tmp, &indices_tmp, x_grad_data); } } else { std::vector trans; for (int i = 0; i < axis; i++) { trans.emplace_back(i); } trans.emplace_back(out_dims.size() - 1); for (int i = axis + 1; i < out_dims.size() - 1; i++) { trans.emplace_back(i); } trans.emplace_back(axis); DDim trans_dims(out_dims); DDim trans_in_dims(in_dims); for (size_t i = 0; i < trans.size(); i++) { trans_dims[i] = out_dims[trans[i]]; trans_in_dims[i] = in_dims[trans[i]]; } DenseTensor trans_dO, trans_ind; trans_dO.Resize(trans_dims); trans_ind.Resize(trans_dims); dev_ctx.template Alloc(&trans_dO); dev_ctx.template Alloc(&trans_ind); int ndims = trans.size(); if (keepdim) { funcs::TransCompute( ndims, dev_ctx, d_out, &trans_dO, trans); funcs::TransCompute( ndims, dev_ctx, indices, &trans_ind, trans); } else { DenseTensor out_grad_tmp, indices_tmp; out_grad_tmp.Resize(d_out.dims()); indices_tmp.Resize(indices.dims()); dev_ctx.template Alloc(&out_grad_tmp); dev_ctx.template Alloc(&indices_tmp); Copy(dev_ctx, d_out, dev_ctx.GetPlace(), false, &out_grad_tmp); Copy(dev_ctx, indices, dev_ctx.GetPlace(), false, &indices_tmp); out_grad_tmp.Resize(out_dims); indices_tmp.Resize(out_dims); funcs::TransCompute( ndims, dev_ctx, out_grad_tmp, &trans_dO, trans); funcs::TransCompute( ndims, dev_ctx, indices_tmp, &trans_ind, trans); } const int64_t input_height = phi::product( phi::slice_ddim(trans_in_dims, 0, trans_in_dims.size() - 1)); const int64_t input_width = trans_in_dims[trans_in_dims.size() - 1]; DenseTensor tmp_out; tmp_out.Resize(trans_in_dims); T* t_out = dev_ctx.template Alloc(&tmp_out); memset(t_out, 0, d_x->numel() * sizeof(T)); kthvalueAssign(input_height, input_width, in_dims.size(), &trans_dO, &trans_ind, t_out); funcs::TransCompute( ndims, dev_ctx, tmp_out, d_x, trans); } } } // namespace phi PD_REGISTER_KERNEL(kthvalue_grad, CPU, ALL_LAYOUT, phi::KthvalueGradKernel, float, double, int, int64_t) {}