import py_paddle.swig_paddle as api from py_paddle import DataProviderConverter import paddle.trainer.PyDataProvider2 as dp import paddle.trainer.config_parser import numpy as np from mnist_util import read_from_mnist def init_parameter(network): assert isinstance(network, api.GradientMachine) for each_param in network.getParameters(): assert isinstance(each_param, api.Parameter) array = each_param.getBuf(api.PARAMETER_VALUE).toNumpyArrayInplace() assert isinstance(array, np.ndarray) for i in xrange(len(array)): array[i] = np.random.uniform(-1.0, 1.0) def generator_to_batch(generator, batch_size): ret_val = list() for each_item in generator: ret_val.append(each_item) if len(ret_val) == batch_size: yield ret_val ret_val = list() if len(ret_val) != 0: yield ret_val def input_order_converter(generator): for each_item in generator: yield each_item['pixel'], each_item['label'] def main(): api.initPaddle("-use_gpu=false", "-trainer_count=4") # use 4 cpu cores config = paddle.trainer.config_parser.parse_config( 'simple_mnist_network.py', '') opt_config = api.OptimizationConfig.createFromProto(config.opt_config) _temp_optimizer_ = api.ParameterOptimizer.create(opt_config) enable_types = _temp_optimizer_.getParameterTypes() m = api.GradientMachine.createFromConfigProto( config.model_config, api.CREATE_MODE_NORMAL, enable_types) assert isinstance(m, api.GradientMachine) init_parameter(network=m) updater = api.ParameterUpdater.createLocalUpdater(opt_config) assert isinstance(updater, api.ParameterUpdater) updater.init(m) converter = DataProviderConverter( input_types=[dp.dense_vector(784), dp.integer_value(10)]) train_file = './data/raw_data/train' m.start() for _ in xrange(100): updater.startPass() outArgs = api.Arguments.createArguments(0) train_data_generator = input_order_converter( read_from_mnist(train_file)) for batch_id, data_batch in enumerate( generator_to_batch(train_data_generator, 2048)): trainRole = updater.startBatch(len(data_batch)) def updater_callback(param): updater.update(param) m.forwardBackward( converter(data_batch), outArgs, trainRole, updater_callback) cost_vec = outArgs.getSlotValue(0) cost_vec = cost_vec.copyToNumpyMat() cost = cost_vec.sum() / len(data_batch) print 'Batch id', batch_id, 'with cost=', cost updater.finishBatch(cost) updater.finishPass() m.finish() if __name__ == '__main__': main()