// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "cinn/hlir/framework/graph_compiler.h" #include "cinn/hlir/framework/scope.h" #include "cinn/runtime/cinn_runtime.h" #include "cinn/runtime/flags.h" #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h" namespace paddle { namespace operators { static constexpr char kX[] = "X"; static constexpr char kOutputs[] = "Out"; static constexpr char kCompilationKey[] = "compilation_key"; using LoDTensor = framework::LoDTensor; using CinnTensor = ::cinn::hlir::framework::Tensor; using CinnScope = ::cinn::hlir::framework::Scope; using CinnCompiler = framework::paddle2cinn::CinnCompiler; using CinnCompiledObject = framework::paddle2cinn::CinnCompiledObject; namespace details { class CinnLaunchContext { public: explicit CinnLaunchContext(const CinnCompiledObject& compiled_obj); // Return whether a Paddle variable used on compiled kernels bool IsVariableUsed(const std::string& var_name); // Allocate buffer to a Paddle tensor with assginment information from CINN void MutableTensorData(const std::string& var_name, const platform::Place& place, LoDTensor* paddle_tensor, bool is_internal_var = false); // Assign tensor buffer to input or output variables void AssignExternalVariable(const std::string& var_name, LoDTensor* tensor); // Assign tensor buffer to internal variables void AssignInternalVariable(const std::string& var_name, LoDTensor* tensor); // Extract internal variable names from CinnScope // by excluding used input and output variables std::vector GetInternalVariableNames(); // Finalize all execution arguments and return them const std::map& FinalizeArguments() const; private: // Get CinnTensor with CINN variable name CinnTensor GetCinnTensor(const std::string& var_name); // Check whether tensors from Paddle and CINN of the same variable // are equivalent in type and dimension void CheckTensorEquivalent(const std::string& var_name, const LoDTensor& paddle_tensor, const CinnTensor& cinn_tensor); // Share the buffer of a Paddle tensor to CINN by delivering memory address // to a cinn_buffer_t object std::unique_ptr ShareTensorWithCinnBuffer(LoDTensor* tensor); // Set an argument with (cinn name)->(paddle tensor) pair void SetArgument(const std::string& cinn_name, LoDTensor* paddle_tensor); private: // a variable name map from paddle to cinn const std::unordered_map& paddle2cinn_varmap_; // the variable scope of cinn const std::shared_ptr cinn_scope_; // all variables used by compiled executable program std::unordered_set cinn_variable_names_; // because a cinn_pod_value_t does not own the cinn_buffer_t object, // an extra stroage is necessary to keep the object and it can // not be released until runtime program finish execution. std::vector> hold_buffers_; // name to execution argument std::map name2argument_; }; // Tranform Paddle place to CINN target const ::cinn::common::Target& PlaceToCinnTarget(const platform::Place& place); // Print detailed compilation result of graph for debug void DebugCinnCompiledResult(const CinnCompiledObject& result); // Launch cinn to execute compiled executable program and wait done void LaunchCinnExecution(const CinnCompiledObject& compiled_obj, const CinnLaunchContext& context); // Set cinn FLAGS (such as FLAGS_cinn_cudnn_deterministic) with paddle's FLAGS. void SetCinnRuntimeFlags(); } // namespace details template class CinnLaunchOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const auto& scope = ctx.scope(); const auto& place = ctx.GetPlace(); // Step 1. Find graph object and prepare input PADDLE_ENFORCE_EQ(ctx.HasAttr(kCompilationKey), true, platform::errors::NotFound( "No Attribute(%s) found for CinnLaunchOp operator.", kCompilationKey)); const auto& compilation_key = ctx.template Attr(kCompilationKey); VLOG(4) << "CinnLaunchOp attribute(" << kCompilationKey << ") " << "value:\n" << CinnCompiler::GetInstance()->ReadableKey(compilation_key); auto input_variable_names = ctx.InputNames(kX); const auto& input_tensors = ctx.MultiInput(kX); std::map inputs_name2tensor; std::transform(input_variable_names.begin(), input_variable_names.end(), input_tensors.begin(), std::inserter(inputs_name2tensor, inputs_name2tensor.end()), [](const std::string& name, const LoDTensor* tensor) { return std::make_pair(name, tensor); }); // Step 2. Get compilation result of the graph auto target = details::PlaceToCinnTarget(place); const auto& cinn_compiled_object = CinnCompiler::GetInstance()->Compile( compilation_key, inputs_name2tensor, target); details::DebugCinnCompiledResult(cinn_compiled_object); auto launch_context = std::make_unique(cinn_compiled_object); // Step 3. Prepare arguments needed for the compiled executable program. VLOG(4) << "CinnLaunchOp prepare arguments"; // 3.1 Prepare input variables: tensors of input variables have // been initialized before graph compiled, just check the // equiality between tensors of paddle and cinn. for (const auto& var_name : input_variable_names) { if (!launch_context->IsVariableUsed(var_name)) { // some input variables don't need for cinn because they are // eliminated by optimized passes or some cinn operators use // less variables VLOG(4) << "Input variable(" << var_name << ") not used by cinn"; continue; } launch_context->AssignExternalVariable( var_name, scope.GetVar(var_name)->GetMutable()); } // 3.2 Prepare output variables: all output variables should // be initialized and allocated buffer before // the runtime program start execution, the compilation result // includes details of their buffer assginment and we use that to // allocate space in Paddle. For those variables allocated yet, // like persistable parameters, just check the equiality between // Paddle allocation and CINN buffer assginment. auto output_variable_names = ctx.OutputNames(kOutputs); for (const auto var_name : output_variable_names) { PADDLE_ENFORCE_EQ(launch_context->IsVariableUsed(var_name), true, platform::errors::InvalidArgument( "Output variable(%s) not used by cinn", var_name)); auto* tensor = scope.GetVar(var_name)->GetMutable(); if (!tensor->IsInitialized()) { launch_context->MutableTensorData(var_name, place, tensor); } launch_context->AssignExternalVariable( var_name, scope.GetVar(var_name)->GetMutable()); } // 3.3 Prepare internal or temporary variables: Create a temporary // scope to keep internal variables within graph or temporary // variables needed by the compiled runtime program in addition. // Here we directly use the names from CinnScope as Paddle variable // names, because they will not be used outside the graph // and should be destructed after computation finished. auto internal_variable_names = launch_context->GetInternalVariableNames(); auto temp_scope = scope.NewTmpScope(); for (const auto& var_name : internal_variable_names) { auto* tensor = temp_scope->Var(var_name)->GetMutable(); launch_context->MutableTensorData(var_name, place, tensor, true); launch_context->AssignInternalVariable(var_name, tensor); } // Step 4. Set CINN runtime FLAGS, such as FLAGS_cinn_cudnn_deterministic. details::SetCinnRuntimeFlags(); // Step 5. Launch CINN to execute the compiled executable program details::LaunchCinnExecution(cinn_compiled_object, *launch_context); VLOG(4) << "CinnLaunchOp launch execution done."; } }; } // namespace operators } // namespace paddle