# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import numbers import numpy as np try: from collections.abc import Sequence, Mapping except: from collections import Sequence, Mapping FIELD_PREFIX = "_paddle_field_" def _flatten_batch(batch): """ For lod_blocking_queue only receive tensor array, flatten batch data, extract numpy.array data out as a list of numpy.array to send to lod_blocking_queue, and save the batch data structure such as fields in other types (str, int, etc) or key-value map of dictionaries """ def _flatten(batch, flat_batch, structure, field_idx): if isinstance(batch, Sequence): for field in batch: if isinstance(field, (np.ndarray, paddle.Tensor)): structure.append('{}{}'.format(FIELD_PREFIX, field_idx)) flat_batch.append(field) field_idx += 1 elif isinstance(field, (str, bytes, numbers.Number)): structure.append(field) elif isinstance(field, Sequence): field_struct, field_idx = _flatten(field, flat_batch, [], field_idx) structure.append(field_struct) elif isinstance(field, Mapping): field_struct, field_idx = _flatten(field, flat_batch, {}, field_idx) structure.append(field_struct) else: structure.append(field) elif isinstance(batch, Mapping): for k, field in batch.items(): if isinstance(field, (np.ndarray, paddle.Tensor)): structure[k] = '{}{}'.format(FIELD_PREFIX, field_idx) flat_batch.append(field) field_idx += 1 elif isinstance(field, (str, bytes, numbers.Number)): structure[k] = field elif isinstance(field, Sequence): field_struct, field_idx = _flatten(field, flat_batch, [], field_idx) structure[k] = field_struct elif isinstance(field, Mapping): field_struct, field_idx = _flatten(field, flat_batch, {}, field_idx) structure[k] = field_struct else: structure[k] = field else: raise TypeError("wrong flat data type: {}".format(type(batch))) return structure, field_idx # sample only contains single fields if not isinstance(batch, Sequence): flat_batch = [] structure, _ = _flatten([batch], flat_batch, [], 0) return flat_batch, structure[0] flat_batch = [] structure, _ = _flatten(batch, flat_batch, [], 0) return flat_batch, structure def _restore_batch(flat_batch, structure): """ After reading list of Tensor data from lod_blocking_queue outputs, use this function to restore the batch data structrue, replace :attr:`_paddle_field_x` with data from flat_batch """ def _restore(structure, field_idx): if isinstance(structure, Sequence): for i, field in enumerate(structure): if isinstance(field, str) and field.startswith(FIELD_PREFIX): cur_field_idx = int(field.replace(FIELD_PREFIX, '')) field_idx = max(field_idx, cur_field_idx) assert flat_batch[cur_field_idx] is not None, \ "flat_batch[{}] parsed repeatly" structure[i] = flat_batch[cur_field_idx] flat_batch[cur_field_idx] = None elif isinstance(field, (str, bytes, numbers.Number)): continue elif isinstance(field, (Sequence, Mapping)): field_idx = _restore(structure[i], field_idx) elif isinstance(structure, Mapping): for k, field in structure.items(): if isinstance(field, str) and field.startswith(FIELD_PREFIX): cur_field_idx = int(field.replace(FIELD_PREFIX, '')) field_idx = max(field_idx, cur_field_idx) assert flat_batch[cur_field_idx] is not None, \ "flat_batch[{}] parsed repeatly" structure[k] = flat_batch[cur_field_idx] flat_batch[cur_field_idx] = None elif isinstance(field, (str, bytes, numbers.Number)): continue elif isinstance(field, (Sequence, Mapping)): field_idx = _restore(structure[k], field_idx) else: raise TypeError("wrong flat data type: {}".format(type(batch))) return field_idx assert isinstance(flat_batch, Sequence), \ "flat_batch is not a list or tuple" # no np.array in dataset, no output tensor from blocking queue # simply return structure if len(flat_batch) == 0: return structure # sample only contains single fields if isinstance(structure, (str, bytes)): assert structure == '{}{}'.format(FIELD_PREFIX, 0), \ "invalid structure: {}".format(structure) return flat_batch[0] field_idx = _restore(structure, 0) assert field_idx + 1 == len(flat_batch), "Tensor parse incomplete" return structure