/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/operators/elementwise/elementwise_op.h" #include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h" #include "paddle/fluid/operators/elementwise/elementwise_op_function.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/platform/cpu_info.h" namespace paddle { namespace operators { class ElementwiseMulOp : public ElementwiseOp { public: using Tensor = framework::Tensor; using ElementwiseOp::ElementwiseOp; #ifdef PADDLE_WITH_MKLDNN static bool AreDimsAndFormatCorrect(const framework::ExecutionContext& ctx, int simd_width, mkldnn::memory::format_tag x_format) { using Tensor = framework::Tensor; using paddle::framework::vectorize; using mkldnn::memory; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto x_dims = vectorize(x->dims()); const bool are_dims_divisable = !(x_dims[1] % simd_width); const bool is_x_format_correct = x->format() == x_format; const bool is_y_format_correct = vectorize(y->dims()).size() == 2; return are_dims_divisable && is_x_format_correct && is_y_format_correct; } #endif framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X"); #ifdef PADDLE_WITH_MKLDNN using mkldnn::memory; if (platform::CanMKLDNNBeUsed(ctx)) { bool can_use_avx512_kernel = platform::MayIUse(platform::avx512f) && AreDimsAndFormatCorrect(ctx, 16, memory::format_tag::nChw16c); if (can_use_avx512_kernel) { return framework::OpKernelType(input_data_type, ctx.GetPlace(), framework::DataLayout::kMKLDNN, framework::LibraryType::kMKLDNN); } } #endif return framework::OpKernelType(input_data_type, ctx.GetPlace()); } }; template void default_elementwise_mul(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, framework::Tensor* z) { int axis = ctx.Attr("axis"); auto x_dims = x->dims(); auto y_dims = y->dims(); if (x_dims.size() >= y_dims.size()) { ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, MulFunctor(), z); } else { ElementwiseComputeEx, DeviceContext, T>( ctx, x, y, axis, InverseMulFunctor(), z); } } template struct SameDimsElemwiseMul { void operator()(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, framework::Tensor* z); }; template class ElementwiseMulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto x_var = ctx.InputVar("X"); PADDLE_ENFORCE(x_var != nullptr, "Cannot get input Variable X, variable name = %s", ctx.InputName("X")); auto* y = ctx.Input("Y"); framework::Tensor x, *z; if (x_var->IsType()) { PADDLE_ENFORCE(y->dims().size() == 1 && y->dims()[0] == 1, "For elementwise_op, if X is Sparse, Y must be scalar."); auto& x_sele = x_var->Get(); auto out_sele = ctx.Output("Out"); x = x_sele.value(); out_sele->set_rows(x_sele.rows()); out_sele->set_height(x_sele.height()); out_sele->mutable_value()->Resize(x_sele.value().dims()); out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type()); z = ctx.Output("Out")->mutable_value(); } else if (x_var->IsType()) { x = x_var->Get(); z = ctx.Output("Out"); } else { PADDLE_THROW("X's type[%s] is not supported by elementwise_op.", framework::ToTypeName(x_var->Type())); } z->mutable_data(ctx.GetPlace()); auto dims_equal = x.dims() == y->dims(); if (dims_equal) { SameDimsElemwiseMul same_dims_mul; same_dims_mul(ctx, &x, y, z); } else { default_elementwise_mul(ctx, &x, y, z); } } }; template struct MulGradDX { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; } }; template struct MulGradDY { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; } }; template typename std::enable_if< std::is_same::value>::type elementwise_mul_grad(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, const framework::Tensor* out, const framework::Tensor* dout, framework::Tensor* dx, framework::Tensor* dy) { int axis = ctx.Attr("axis"); ElemwiseGradCompute, MulGradDY>( ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX(), MulGradDY()); } #ifdef PADDLE_WITH_CUDA // cuda definition template typename std::enable_if< std::is_same::value>::type elementwise_mul_grad(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, const framework::Tensor* out, const framework::Tensor* dout, framework::Tensor* dx, framework::Tensor* dy); #endif template class ElementwiseMulGradKernel : public ElemwiseGradKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { ElemwiseGradKernel::Compute(ctx); using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* out = dout; // out is not necessary auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); int axis = ctx.Attr("axis"); if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) { elementwise_mul_grad(ctx, x, y, out, dout, dx, dy); } else { ElemwiseGradCompute, MulGradDY>( ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX(), MulGradDY()); } } }; template class ElementwiseMulDoubleGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input("DOut"); auto* ddx = ctx.Input("DDX"); auto* ddy = ctx.Input("DDY"); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); auto* ddout = ctx.Output("DDOut"); if (ddout) ddout->mutable_data(ctx.GetPlace()); Tensor ddx_safe, ddy_safe; GetDoubleGradSafeTensor(ctx, x, ddx, &ddx_safe); GetDoubleGradSafeTensor(ctx, y, ddy, &ddy_safe); // dx = dout * ddy // dy = dout * ddx // ddout = ddx * y + x * ddy // change computation sequence to save memory, so ddout can inplace ddx and // dx can be used as 'tmp' tensor // (1) dx = x * ddy // (2) dy = dout * ddx // (3) ddout = ddx * y // (4) ddout = ddout + dx // (5) dx = dout * ddy if (ddout) { int axis = ctx.Attr("axis"); auto& place = *ctx.template device_context().eigen_device(); // size(ddout) > size(ddx), ddout can't use memory of ddx using inplace if (ddout->numel() > ddx->numel()) { ElemwiseGradCompute, MulGradDY>( ctx, ddx_safe, ddy_safe, *dout, *dout, axis, dx, dy, MulGradDX(), MulGradDY()); Tensor ddout_tmp; ddout_tmp.mutable_data(ddout->dims(), ctx.GetPlace()); default_elementwise_mul(ctx, y, &ddx_safe, ddout); default_elementwise_mul(ctx, &ddy_safe, x, &ddout_tmp); auto ddout_t = framework::EigenVector::Flatten(*ddout); auto ddout_tmp_t = framework::EigenVector::Flatten(ddout_tmp); ddout_t.device(place) = ddout_t + ddout_tmp_t; } else { // use dx to save memory, other than alloc tmp tensor Tensor* ddout_tmp = dx; default_elementwise_mul(ctx, x, &ddy_safe, ddout_tmp); // NOTE: in the following ElemwiseGradCompute, for the // first output tensor is nullptr, the branch to calculate first // output tensor will not be activated, DivGradDx function will not // be called and can be ignored, the first branch has little effect // on running speed. ElemwiseGradCompute, MulGradDY>( ctx, ddx_safe, ddy_safe, *dout, *dout, axis, nullptr, dy, MulGradDX(), MulGradDY()); default_elementwise_mul(ctx, &ddx_safe, y, ddout); auto ddout_t = framework::EigenVector::Flatten(*ddout); auto ddout_tmp_t = framework::EigenVector::Flatten(*ddout_tmp); ddout_t.device(place) = ddout_t + ddout_tmp_t; default_elementwise_mul(ctx, dout, &ddy_safe, dx); } } } }; } // namespace operators } // namespace paddle