## Auto Gradient Checker Design ## Backgraound: - Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right: - 1. you should get the right backpropagation formula according to the forward computation. - 2. you should implement it right in CPP. - 3. it's difficult to prepare test data. - Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages: - 1. numeric gradient checker only need forward operator. - 2. user only need to prepare the input data for forward Operator. ## Mathematical Theory The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful. - [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization) - [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96) ## Numeric Gradient Implementation ### Python Interface ```python def get_numeric_gradient(op, input_values, output_name, input_to_check, delta=0.005, local_scope=None): """ Get Numeric Gradient for an operator's input. :param op: C++ operator instance, could be an network :param input_values: The input variables. Should be an dictionary, key is variable name. Value is numpy array. :param output_name: The final output variable name. :param input_to_check: The input variable need to get gradient. :param delta: The perturbation value for numeric gradient method. The smaller delta is, the more accurate result will get. But if that delta is too small, it could occur numerical stability problem. :param local_scope: The local scope used for get_numeric_gradient. :return: The gradient array in numpy format. """ ``` ### Explaination: - Why need `output_name` - One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate. - Why need `input_to_check` - One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times. ### Core Algorithm Implementation ```python # we only compute gradient of one element each time. # we use a for loop to compute the gradient of every element. for i in xrange(tensor_size): # get one input element throw it's index i. origin = tensor_to_check.get_float_element(i) # add delta to it, run op and then get the sum of the result tensor. x_pos = origin + delta tensor_to_check.set_float_element(i, x_pos) y_pos = get_output() # plus delta to this element, run op and get the sum of the result tensor. x_neg = origin - delta tensor_to_check.set_float_element(i, x_neg) y_neg = get_output() # restore old value tensor_to_check.set_float_element(i, origin) # compute the gradient of this element and store it into a numpy array. gradient_flat[i] = (y_pos - y_neg) / delta / 2 # reshape the gradient result to the shape of the source tensor. return gradient_flat.reshape(tensor_to_check.get_dims()) ``` ## Auto Graident Checker Framework Each Operator Kernel has three kinds of Gradient: - 1. Numeric Gradient - 2. CPU Operator Gradient - 3. GPU Operator Gradient(if supported) Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value. - 1. calculate the numeric gradient. - 2. calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient. - 3. calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU) #### Python Interface ```python def check_grad(self, forward_op, input_vars, inputs_to_check, output_name, no_grad_set=None, only_cpu=False, max_relative_error=0.005): """ :param forward_op: used to create backward_op :param input_vars: numpy value of input variable. The following computation will use these variables. :param inputs_to_check: inputs var names that should check gradient. :param output_name: output name that used to :param max_relative_error: The relative tolerance parameter. :param no_grad_set: used when create backward ops :param only_cpu: only compute and check gradient on cpu kernel. :return: """ ``` ### How to check if two numpy array is close enough? if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative ```python numeric_grad = ... operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor()) abs_numeric_grad = numpy.abs(numeric_grad) # if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative # error. abs_numeric_grad[abs_numeric_grad < 1e-3] = 1 diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad max_diff = numpy.max(diff_mat) ``` #### Notes: 1,The Input data for auto gradient checker should be reasonable to avoid numeric problem. #### Refs: - [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization) - [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)