// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include "paddle/phi/common/data_type.h" #include "paddle/phi/core/enforce.h" #include "paddle/phi/core/errors.h" inline void HashCombine(std::size_t* seed) {} // combine hash value // https://stackoverflow.com/questions/2590677/how-do-i-combine-hash-values-in-c0x template inline void HashCombine(std::size_t* seed, const T& v, Rest... rest) { std::hash hasher; *seed ^= hasher(v) + 0x9e3779b9 + (*seed << 6) + (*seed >> 2); HashCombine(seed, rest...); } // custom specialization of std::hash can be injected in namespace std // ref: https://en.cppreference.com/w/cpp/utility/hash namespace std { template struct hash> { std::size_t operator()(std::vector const& vec) const noexcept { std::size_t seed = 0; for (auto val : vec) { HashCombine(&seed, val); } return seed; } }; } // namespace std namespace phi { namespace autotune { template size_t GetKey(Args&&... args) { size_t seed = 0; HashCombine(&seed, std::forward(args)...); return seed; } // Define the cache key of operator size_t ConvKey(const std::vector& x_dims, const std::vector& w_dims, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, phi::DataType dtype); template class AlgorithmsCache { public: AlgorithmsCache() : cache_mutex_(new std::mutex()) { hash_.clear(); } AlgorithmT Get(size_t key) { std::lock_guard lock(*cache_mutex_); PADDLE_ENFORCE_NE( hash_.find(key), hash_.end(), phi::errors::PreconditionNotMet("The key does not exist.")); return hash_[key]; } bool Find(size_t key) { bool ret = false; std::lock_guard lock(*cache_mutex_); if (hash_.find(key) != hash_.end()) { cache_hits_++; ret = true; } else { cache_misses_++; } return ret; } void Clean() { std::lock_guard lock(*cache_mutex_); hash_.clear(); cache_hits_ = 0; cache_misses_ = 0; } void Set(size_t key, AlgorithmT algo) { std::lock_guard lock(*cache_mutex_); hash_[key] = algo; } int64_t CacheMisses() const { return cache_misses_; } int64_t CacheHits() const { return cache_hits_; } float CacheHitRate() const { int64_t num_accesses = cache_hits_ + cache_misses_; float cache_hit_rate = 0.; if (num_accesses != 0) { cache_hit_rate = static_cast(cache_hits_) / static_cast(num_accesses); } return cache_hit_rate; } int64_t Size() const { return hash_.size(); } private: std::unordered_map hash_; std::shared_ptr cache_mutex_; int64_t cache_hits_{0}; int64_t cache_misses_{0}; }; enum class AlgorithmType { kConvForward = 1, kConvBackwardData = 2, kConvBackwardFilter = 3, kAlgorithmCount = 4 }; // AlgorithmsConfigKey -> AlgorithmsID using AlgorithmsCacheMap = AlgorithmsCache; // AlgorithmType -> AlgorithmsCache using AlgorithmsTypeMap = std::unordered_map; class AutoTuneCache { public: static AutoTuneCache& Instance() { static AutoTuneCache autotune_cache; return autotune_cache; } AlgorithmsCacheMap& Get(const AlgorithmType& algo_type) { return auto_tune_map_[static_cast(algo_type)]; } AlgorithmsCacheMap& GetConvForward() { return Get(AlgorithmType::kConvForward); } AlgorithmsCacheMap& GetConvBackwardData() { return Get(AlgorithmType::kConvBackwardData); } AlgorithmsCacheMap& GetConvBackwardFilter() { return Get(AlgorithmType::kConvBackwardFilter); } void Clean() { for (auto& v : auto_tune_map_) { v.second.Clean(); } } void UpdateStatus(); // The number of total config cached int64_t Size() const { return total_size_; } int64_t CacheHits() const { return total_cache_hits_; } int64_t CacheMisses() const { return total_cache_misses_; } float CacheHitRate() const { float total_cache_hit_rate = 0.; int64_t total_num_accesses = total_cache_hits_ + total_cache_misses_; if (total_num_accesses != 0) { total_cache_hit_rate = static_cast(total_cache_hits_) / static_cast(total_num_accesses); } return total_cache_hit_rate; } private: AutoTuneCache() : autotune_cache_mutex_(new std::mutex()) { for (int i = 1; i < static_cast(AlgorithmType::kAlgorithmCount); ++i) { Register(static_cast(i)); } } void Register(const AlgorithmType& algo_type) { std::lock_guard lock(*autotune_cache_mutex_); int64_t key = static_cast(algo_type); if (auto_tune_map_.find(key) == auto_tune_map_.end()) { AlgorithmsCacheMap cache; auto_tune_map_[key] = cache; } } AlgorithmsTypeMap auto_tune_map_; std::shared_ptr autotune_cache_mutex_; int64_t total_cache_hits_{0}; int64_t total_cache_misses_{0}; int64_t total_size_{0}; }; } // namespace autotune } // namespace phi