// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/renorm_op.h" #include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h" #include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h" #include "paddle/fluid/operators/utils.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" namespace paddle { namespace operators { __device__ __forceinline__ float inline_pow(float base, float exponent) { return pow(base, exponent); } __device__ __forceinline__ double inline_pow(double base, double exponent) { return pow(base, exponent); } __device__ __forceinline__ float inline_abs(float x) { return abs(x); } __device__ __forceinline__ double inline_abs(double x) { return abs(x); } template struct UnsignedPowFunctor { HOSTDEVICE explicit inline UnsignedPowFunctor(float porder) { this->porder = porder; } HOSTDEVICE inline Ty operator()(const Tx& x) const { return static_cast(inline_pow(inline_abs(x), static_cast(porder))); } float porder; }; template __global__ void RenormKernelFunc3(int64_t size, T* dim_value, float p, float max_norm) { int64_t i = ((int64_t)blockIdx.x) * blockDim.x + threadIdx.x; if (i < size) { T temp = pow(dim_value[i], (T)(1.0 / p)); dim_value[i] = 1.0; if (temp > max_norm) dim_value[i] = max_norm / temp; } } template __global__ void RenormKernelFunc4(const T* x_data, T* out_data, int64_t size, T* dim_value, int64_t dimension_each, int64_t dim_divisor) { int64_t i = ((int64_t)blockIdx.x) * blockDim.x + threadIdx.x; auto dim_index = i / dim_divisor % dimension_each; if (i < size) { if (dim_value[dim_index] < 1.0) out_data[i] = dim_value[dim_index] * x_data[i]; else out_data[i] = x_data[i]; } } template __global__ void RenormGradKernelFunc1(const T* x_data, const T* dout_data, T* pow_value, T* mul_value, int64_t size, int64_t dimension_each, float p, int64_t dim_divisor) { int64_t i = ((int64_t)blockIdx.x) * blockDim.x + threadIdx.x; auto dim_index = i / dim_divisor % dimension_each; if (i < size) { pow_value[i] = pow(abs(x_data[i]), (T)p); mul_value[i] = x_data[i] * dout_data[i]; } } template __global__ void RenormGradKernelFunc2(const T* x_data, const T* dout_data, T* dx_data, int64_t size, T* dim_value, T* dim_power_sum, T* weight_derivative, int64_t dimension_each, float p, float max_norm, int64_t dim_divisor) { int64_t i = ((int64_t)blockIdx.x) * blockDim.x + threadIdx.x; auto dim_index = i / dim_divisor % dimension_each; if (i < dimension_each) { dim_power_sum[i] = 0; auto temp = pow(dim_value[i], (T)(1.0 / p)); if (temp > max_norm) { dim_power_sum[i] = pow(dim_value[i], (T)(-1.0 - 1.0 / p)) * -1 * max_norm; dim_value[i] = max_norm / temp; } else { dim_value[i] = 1.0; } } __syncthreads(); if (i < size) { dx_data[i] = dim_value[dim_index] * dout_data[i]; dx_data[i] = dx_data[i] + weight_derivative[dim_index] * dim_power_sum[dim_index] * pow(abs(x_data[i]), T(p - 1.0)) * (x_data[i] >= 0 ? 1 : -1); } } template class CUDARenormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* x = context.Input("X"); Tensor* out = context.Output("Out"); auto numel = x->numel(); const T* x_data = x->data(); auto input_dims = x->dims(); float max_norm = context.Attr("max_norm"); float p = context.Attr("p"); int dim = context.Attr("axis"); auto dimension_each = input_dims[dim]; auto dim_size = input_dims.size(); framework::Tensor pow_value, dim_value; int64_t dim_divisor = 1, pre_mul = 1; for (int i = dim + 1; i < dim_size; i++) dim_divisor *= input_dims[i]; for (int i = 0; i < dim; i++) pre_mul *= input_dims[i]; pow_value.Resize( framework::make_ddim({pre_mul, dimension_each, dim_divisor})); dim_value.Resize(framework::make_ddim({dimension_each})); pow_value.mutable_data(context.GetPlace()); out->Resize(framework::make_ddim(framework::vectorize(input_dims))); T* out_data = out->mutable_data(context.GetPlace()); auto stream = context.cuda_device_context().stream(); int block = std::min(numel, static_cast(256)); using MT = typename details::MPTypeTrait::Type; int grid = (numel + block - 1) / block; int block2 = std::min(dimension_each, static_cast(256)); int grid2 = (dimension_each + block2 - 1) / block2; std::vector ins = {x}; std::vector outs = {&pow_value}; auto func = UnsignedPowFunctor(p); const auto& cuda_ctx = context.template device_context(); LaunchSameDimsElementwiseCudaKernel>( cuda_ctx, ins, &outs, func); std::vector reduce_axis = {0, 2}; TensorReduceFunctorImpl>( pow_value, &dim_value, kps::IdentityFunctor(), reduce_axis, stream); RenormKernelFunc3<<>>( numel, dim_value.mutable_data(context.GetPlace()), p, max_norm); RenormKernelFunc4<<>>( x_data, out_data, numel, dim_value.mutable_data(context.GetPlace()), dimension_each, dim_divisor); // platform::GpuStreamSync(stream); } }; template class CUDAGradRenormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const framework::Tensor* d_out = ctx.Input(framework::GradVarName("Out")); const framework::Tensor* x = ctx.Input("X"); framework::Tensor* d_x = ctx.Output(framework::GradVarName("X")); auto numel = d_out->numel(); const T* dout_data = d_out->data(); const T* x_data = x->data(); auto input_dims = x->dims(); float max_norm = ctx.Attr("max_norm"); float p = ctx.Attr("p"); int dim = ctx.Attr("axis"); auto dimension_each = input_dims[dim]; auto dim_size = input_dims.size(); int64_t dim_divisor = 1, pre_mul = 1; for (int i = dim + 1; i < dim_size; i++) dim_divisor *= input_dims[i]; for (int i = 0; i < dim; i++) pre_mul *= input_dims[i]; d_x->Resize(framework::make_ddim(framework::vectorize(input_dims))); T* dx_data = d_x->mutable_data(ctx.GetPlace()); framework::Tensor pow_value, mul_value, dim_value, dim_power_sum, weight_derivative; pow_value.Resize( framework::make_ddim({pre_mul, dimension_each, dim_divisor})); mul_value.Resize( framework::make_ddim({pre_mul, dimension_each, dim_divisor})); dim_value.Resize(framework::make_ddim({dimension_each})); dim_power_sum.Resize(framework::make_ddim({dimension_each})); weight_derivative.Resize(framework::make_ddim({dimension_each})); auto stream = ctx.cuda_device_context().stream(); int block = std::min(numel, static_cast(256)); int grid = (numel + block - 1) / block; pow_value.mutable_data(ctx.GetPlace()); mul_value.mutable_data(ctx.GetPlace()); dim_value.mutable_data(ctx.GetPlace()); dim_power_sum.mutable_data(ctx.GetPlace()); weight_derivative.mutable_data(ctx.GetPlace()); RenormGradKernelFunc1<<>>( x_data, dout_data, pow_value.mutable_data(ctx.GetPlace()), mul_value.mutable_data(ctx.GetPlace()), numel, dimension_each, p, dim_divisor); std::vector reduce_axis = {0, 2}; TensorReduceFunctorImpl>( pow_value, &dim_value, kps::IdentityFunctor(), reduce_axis, stream); TensorReduceFunctorImpl>( mul_value, &weight_derivative, kps::IdentityFunctor(), reduce_axis, stream); RenormGradKernelFunc2<<>>( x_data, dout_data, dx_data, numel, dim_value.mutable_data(ctx.GetPlace()), dim_power_sum.mutable_data(ctx.GetPlace()), weight_derivative.mutable_data(ctx.GetPlace()), dimension_each, p, max_norm, dim_divisor); // platform::GpuStreamSync(stream); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL(renorm, ops::CUDARenormKernel, ops::CUDARenormKernel); REGISTER_OP_CUDA_KERNEL(renorm_grad, ops::CUDAGradRenormKernel, ops::CUDAGradRenormKernel);