// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifdef PADDLE_WITH_BOX_PS #include "paddle/fluid/framework/fleet/box_wrapper.h" #include #include #include #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/platform/gpu_info.h" namespace paddle { namespace framework { std::shared_ptr BoxWrapper::s_instance_ = nullptr; cudaStream_t BoxWrapper::stream_list_[8]; std::shared_ptr BoxWrapper::boxps_ptr_ = nullptr; AfsManager* BoxWrapper::afs_manager = nullptr; void BasicAucCalculator::compute() { double* table[2] = {&_table[0][0], &_table[1][0]}; double area = 0; double fp = 0; double tp = 0; for (int i = _table_size - 1; i >= 0; i--) { double newfp = fp + table[0][i]; double newtp = tp + table[1][i]; area += (newfp - fp) * (tp + newtp) / 2; fp = newfp; tp = newtp; } if (fp < 1e-3 || tp < 1e-3) { _auc = -0.5; // which means all nonclick or click } else { _auc = area / (fp * tp); } _mae = _local_abserr / (fp + tp); _rmse = sqrt(_local_sqrerr / (fp + tp)); _actual_ctr = tp / (fp + tp); _predicted_ctr = _local_pred / (fp + tp); _size = fp + tp; } void BasicAucCalculator::calculate_bucket_error() { double last_ctr = -1; double impression_sum = 0; double ctr_sum = 0.0; double click_sum = 0.0; double error_sum = 0.0; double error_count = 0; double* table[2] = {&_table[0][0], &_table[1][0]}; for (int i = 0; i < _table_size; i++) { double click = table[1][i]; double show = table[0][i] + table[1][i]; double ctr = static_cast(i) / _table_size; if (fabs(ctr - last_ctr) > kMaxSpan) { last_ctr = ctr; impression_sum = 0.0; ctr_sum = 0.0; click_sum = 0.0; } impression_sum += show; ctr_sum += ctr * show; click_sum += click; double adjust_ctr = ctr_sum / impression_sum; double relative_error = sqrt((1 - adjust_ctr) / (adjust_ctr * impression_sum)); if (relative_error < kRelativeErrorBound) { double actual_ctr = click_sum / impression_sum; double relative_ctr_error = fabs(actual_ctr / adjust_ctr - 1); error_sum += relative_ctr_error * impression_sum; error_count += impression_sum; last_ctr = -1; } } _bucket_error = error_count > 0 ? error_sum / error_count : 0.0; } // Deprecated: should use BeginFeedPass & EndFeedPass void BoxWrapper::FeedPass(int date, const std::vector& feasgin_to_box) const { int ret = boxps_ptr_->FeedPass(date, feasgin_to_box); PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet( "FeedPass failed in BoxPS.")); } void BoxWrapper::BeginFeedPass(int date, boxps::PSAgentBase** agent) const { int ret = boxps_ptr_->BeginFeedPass(date, *agent); PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet( "BeginFeedPass failed in BoxPS.")); } void BoxWrapper::EndFeedPass(boxps::PSAgentBase* agent) const { int ret = boxps_ptr_->EndFeedPass(agent); PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet( "EndFeedPass failed in BoxPS.")); } void BoxWrapper::BeginPass() const { int ret = boxps_ptr_->BeginPass(); PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet( "BeginPass failed in BoxPS.")); } void BoxWrapper::SetTestMode(bool is_test) const { boxps_ptr_->SetTestMode(is_test); } void BoxWrapper::EndPass(bool need_save_delta) const { int ret = boxps_ptr_->EndPass(need_save_delta); PADDLE_ENFORCE_EQ( ret, 0, platform::errors::PreconditionNotMet("EndPass failed in BoxPS.")); } void BoxWrapper::PullSparse(const paddle::platform::Place& place, const std::vector& keys, const std::vector& values, const std::vector& slot_lengths, const int hidden_size) { VLOG(3) << "Begin PullSparse"; platform::Timer all_timer; platform::Timer pull_boxps_timer; all_timer.Start(); int64_t total_length = std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL); auto buf = memory::AllocShared(place, total_length * sizeof(boxps::FeatureValueGpu)); boxps::FeatureValueGpu* total_values_gpu = reinterpret_cast(buf->ptr()); if (platform::is_cpu_place(place)) { PADDLE_THROW(platform::errors::Unimplemented( "Warning:: CPUPlace is not supported in PaddleBox now.")); } else if (platform::is_gpu_place(place)) { #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) VLOG(3) << "Begin copy keys, key_num[" << total_length << "]"; int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId(); LoDTensor& total_keys_tensor = keys_tensor[device_id]; uint64_t* total_keys = reinterpret_cast( total_keys_tensor.mutable_data({total_length, 1}, place)); // construct slot_level lod info auto slot_lengths_lod = slot_lengths; for (size_t i = 1; i < slot_lengths_lod.size(); i++) { slot_lengths_lod[i] += slot_lengths_lod[i - 1]; } auto buf_key = memory::AllocShared(place, keys.size() * sizeof(uint64_t*)); auto buf_length = memory::AllocShared(place, slot_lengths.size() * sizeof(int64_t)); uint64_t** gpu_keys = reinterpret_cast(buf_key->ptr()); int64_t* gpu_len = reinterpret_cast(buf_length->ptr()); cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*), cudaMemcpyHostToDevice); cudaMemcpy(gpu_len, slot_lengths_lod.data(), slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice); this->CopyKeys(place, gpu_keys, total_keys, gpu_len, static_cast(slot_lengths.size()), static_cast(total_length)); VLOG(3) << "Begin call PullSparseGPU in BoxPS"; pull_boxps_timer.Start(); int ret = boxps_ptr_->PullSparseGPU(total_keys, total_values_gpu, static_cast(total_length), device_id); PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet( "PullSparseGPU failed in BoxPS.")); pull_boxps_timer.Pause(); VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length << "]"; this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len, static_cast(slot_lengths.size()), hidden_size, total_length); #else PADDLE_THROW(platform::errors::PreconditionNotMet( "Please compile WITH_GPU option, because NCCL doesn't support " "windows.")); #endif } else { PADDLE_THROW(platform::errors::PreconditionNotMet( "PaddleBox: PullSparse Only Support CPUPlace or CUDAPlace Now.")); } all_timer.Pause(); VLOG(1) << "PullSparse total costs: " << all_timer.ElapsedSec() << " s, of which BoxPS costs: " << pull_boxps_timer.ElapsedSec() << " s"; VLOG(3) << "End PullSparse"; } void BoxWrapper::PushSparseGrad(const paddle::platform::Place& place, const std::vector& keys, const std::vector& grad_values, const std::vector& slot_lengths, const int hidden_size, const int batch_size) { VLOG(3) << "Begin PushSparseGrad"; platform::Timer all_timer; platform::Timer push_boxps_timer; all_timer.Start(); int64_t total_length = std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL); auto buf = memory::AllocShared( place, total_length * sizeof(boxps::FeaturePushValueGpu)); boxps::FeaturePushValueGpu* total_grad_values_gpu = reinterpret_cast(buf->ptr()); if (platform::is_cpu_place(place)) { PADDLE_THROW(platform::errors::Unimplemented( "Warning:: CPUPlace is not supported in PaddleBox now.")); } else if (platform::is_gpu_place(place)) { #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId(); LoDTensor& cached_total_keys_tensor = keys_tensor[device_id]; uint64_t* total_keys = reinterpret_cast(cached_total_keys_tensor.data()); VLOG(3) << "Begin copy grad tensor to boxps struct"; this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths, hidden_size, total_length, batch_size); VLOG(3) << "Begin call PushSparseGPU in BoxPS"; push_boxps_timer.Start(); int ret = boxps_ptr_->PushSparseGPU( total_keys, total_grad_values_gpu, static_cast(total_length), BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId()); PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet( "PushSparseGPU failed in BoxPS.")); push_boxps_timer.Pause(); #else PADDLE_THROW(platform::errors::PreconditionNotMet( "Please compile WITH_GPU option, because NCCL doesn't support " "windows.")); #endif } else { PADDLE_THROW(platform::errors::PreconditionNotMet( "PaddleBox: PushSparseGrad Only Support CPUPlace or CUDAPlace Now.")); } all_timer.Pause(); VLOG(1) << "PushSparseGrad total cost: " << all_timer.ElapsedSec() << " s, of which BoxPS cost: " << push_boxps_timer.ElapsedSec() << " s"; VLOG(3) << "End PushSparseGrad"; } void BoxWrapper::GetRandomReplace(const std::vector& pass_data) { VLOG(0) << "Begin GetRandomReplace"; size_t ins_num = pass_data.size(); replace_idx_.resize(ins_num); for (auto& cand_list : random_ins_pool_list) { cand_list.ReInitPass(); } std::vector threads; for (int tid = 0; tid < auc_runner_thread_num_; ++tid) { threads.push_back(std::thread([this, &pass_data, tid, ins_num]() { int start = tid * ins_num / auc_runner_thread_num_; int end = (tid + 1) * ins_num / auc_runner_thread_num_; VLOG(3) << "GetRandomReplace begin for thread[" << tid << "], and process [" << start << ", " << end << "), total ins: " << ins_num; auto& random_pool = random_ins_pool_list[tid]; for (int i = start; i < end; ++i) { const auto& ins = pass_data[i]; random_pool.AddAndGet(ins, replace_idx_[i]); } })); } for (int tid = 0; tid < auc_runner_thread_num_; ++tid) { threads[tid].join(); } pass_done_semi_->Put(1); VLOG(0) << "End GetRandomReplace"; } void BoxWrapper::GetRandomData( const std::vector& pass_data, const std::unordered_set& slots_to_replace, std::vector* result) { VLOG(0) << "Begin GetRandomData"; std::vector threads; for (int tid = 0; tid < auc_runner_thread_num_; ++tid) { threads.push_back(std::thread([this, &pass_data, tid, &slots_to_replace, result]() { int debug_erase_cnt = 0; int debug_push_cnt = 0; size_t ins_num = pass_data.size(); int start = tid * ins_num / auc_runner_thread_num_; int end = (tid + 1) * ins_num / auc_runner_thread_num_; VLOG(3) << "GetRandomData begin for thread[" << tid << "], and process [" << start << ", " << end << "), total ins: " << ins_num; const auto& random_pool = random_ins_pool_list[tid]; for (int i = start; i < end; ++i) { const auto& ins = pass_data[i]; const RecordCandidate& rand_rec = random_pool.Get(replace_idx_[i]); Record new_rec = ins; for (auto it = new_rec.uint64_feasigns_.begin(); it != new_rec.uint64_feasigns_.end();) { if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) { it = new_rec.uint64_feasigns_.erase(it); debug_erase_cnt += 1; } else { ++it; } } for (auto slot : slots_to_replace) { auto range = rand_rec.feas_.equal_range(slot); for (auto it = range.first; it != range.second; ++it) { new_rec.uint64_feasigns_.push_back({it->second, it->first}); debug_push_cnt += 1; } } (*result)[i] = std::move(new_rec); } VLOG(3) << "thread[" << tid << "]: erase feasign num: " << debug_erase_cnt << " repush feasign num: " << debug_push_cnt; })); } for (int tid = 0; tid < auc_runner_thread_num_; ++tid) { threads[tid].join(); } VLOG(0) << "End GetRandomData"; } void BoxWrapper::AddReplaceFeasign(boxps::PSAgentBase* p_agent, int feed_pass_thread_num) { VLOG(0) << "Enter AddReplaceFeasign Function"; int semi; pass_done_semi_->Get(semi); VLOG(0) << "Last Pass had updated random pool done. Begin AddReplaceFeasign"; std::vector threads; for (int tid = 0; tid < feed_pass_thread_num; ++tid) { threads.push_back(std::thread([this, tid, p_agent, feed_pass_thread_num]() { VLOG(3) << "AddReplaceFeasign begin for thread[" << tid << "]"; for (size_t pool_id = tid; pool_id < random_ins_pool_list.size(); pool_id += feed_pass_thread_num) { auto& random_pool = random_ins_pool_list[pool_id]; for (size_t i = 0; i < random_pool.Size(); ++i) { auto& ins_candidate = random_pool.Get(i); for (const auto& pair : ins_candidate.feas_) { p_agent->AddKey(pair.second.uint64_feasign_, tid); } } } })); } for (int tid = 0; tid < feed_pass_thread_num; ++tid) { threads[tid].join(); } VLOG(0) << "End AddReplaceFeasign"; } } // end namespace framework } // end namespace paddle #endif