# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle import os class TestFleetMetaOptimizer(unittest.TestCase): def setUp(self): os.environ["POD_IP"] = "127.0.0.1" os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001" os.environ["PADDLE_TRAINERS_NUM"] = "2" os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \ "127.0.0.1:36001,127.0.0.2:36001" def test_graph_execution_optimizer(self): import paddle.fleet as fleet import paddle.fluid.incubate.fleet.base.role_maker as role_maker role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) input_x = paddle.fluid.layers.data( name="x", shape=[32], dtype='float32') input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64') fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh') fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh') prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax') cost = paddle.fluid.layers.cross_entropy( input=prediction, label=input_y) avg_cost = paddle.fluid.layers.mean(x=cost) strategy = paddle.fleet.DistributedStrategy() optimizer = paddle.optimizer.SGD(learning_rate=0.01) optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) optimizer.minimize(avg_cost) def test_recompute_optimizer(self): import paddle.fleet as fleet import paddle.fluid.incubate.fleet.base.role_maker as role_maker role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) input_x = paddle.fluid.layers.data( name="x", shape=[32], dtype='float32') input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64') fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh') fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh') prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax') cost = paddle.fluid.layers.cross_entropy( input=prediction, label=input_y) avg_cost = paddle.fluid.layers.mean(x=cost) strategy = paddle.fleet.DistributedStrategy() strategy.recompute = True strategy.recompute_checkpoints = [fc_2] optimizer = paddle.optimizer.SGD(learning_rate=0.01) optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) optimizer.minimize(avg_cost) if __name__ == "__main__": unittest.main()