#!/bin/bash # This script benchmarking the PaddlePaddle Fluid on # single thread single GPU. export CUDNN_PATH=/paddle/cudnn_v5/cuda/lib # disable openmp and mkl parallel #https://github.com/PaddlePaddle/Paddle/issues/7199 export MKL_NUM_THREADS=1 export OMP_NUM_THREADS=1 ht=`lscpu |grep "per core"|awk -F':' '{print $2}'|xargs` if [ $ht -eq 1 ]; then # HT is OFF if [ -z "$KMP_AFFINITY" ]; then export KMP_AFFINITY="granularity=fine,compact,0,0" fi if [ -z "$OMP_DYNAMIC" ]; then export OMP_DYNAMIC="FALSE" fi else # HT is ON if [ -z "$KMP_AFFINITY" ]; then export KMP_AFFINITY="granularity=fine,compact,1,0" fi fi # disable multi-gpu if have more than one export CUDA_VISIBLE_DEVICES=0 export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=$CUDNN_PATH:$LD_LIBRARY_PATH # vgg16 # cifar10 gpu cifar10 128 FLAGS_benchmark=true python fluid/vgg.py \ --device=GPU \ --batch_size=128 \ --skip_batch_num=5 \ --iterations=30 \ 2>&1 > vgg16_gpu_128.log # resnet50 # resnet50 gpu cifar10 128 FLAGS_benchmark=true python fluid/resnet.py \ --device=GPU \ --batch_size=128 \ --data_set=cifar10 \ --model=resnet_cifar10 \ --skip_batch_num=5 \ --iterations=30 \ 2>&1 > resnet50_gpu_128.log # lstm