# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import abc import paddle.fluid as fluid from paddle.fluid.executor import Executor from paddle.fluid.optimizer import SGD from paddle.optimizer import SGD as SGD_v2 from paddle.fluid.incubate.fleet.base.mode import Mode from paddle.distributed.fleet.base.role_maker import RoleMakerBase from paddle.fluid.contrib.mixed_precision.decorator import OptimizerWithMixedPrecision from . import mode class Mode: """ There are various mode for fleet, each of them is designed for different model. """ PS = 1 COLLECTIVE = 2 __all__ = ['Fleet', 'DistributedOptimizer'] __all__ += mode.__all__ class Fleet(object): """ Fleet is the base class, transpiler and pslib are implementation of Fleet. Args: mode(Mode): the implementation of Fleet's mode. Returns: None """ __metaclass__ = abc.ABCMeta def __init__(self, mode): self._is_initialized = False self._mode = mode self._optimizer = None self._role_maker = None self._executor = None def is_first_worker(self): """ Check whether the node is the first instance of worker. Returns: bool: True if this is the first node of worker, False if not. """ return self._role_maker.is_first_worker() def worker_index(self): """ Get current worker index. Returns: int: node id """ return self._role_maker.worker_index() def worker_num(self): """ Get current total worker number. Returns: int: worker numbers """ return self._role_maker.worker_num() def is_worker(self): """ Check whether the node is an instance of worker. Returns: bool: True if this is a node of worker, False if not. """ return self._role_maker.is_worker() def worker_endpoints(self, to_string=False): """ Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"]. Returns: list/string: server endpoints """ if to_string: return ",".join(self._role_maker.get_trainer_endpoints()) else: return self._role_maker.get_trainer_endpoints() def server_num(self): """ Get current total worker number. Returns: int: server number """ return len(self._role_maker.get_pserver_endpoints()) def server_index(self): """ Get current server index. Returns: int: node id """ return self._role_maker.server_index() def server_endpoints(self, to_string=False): """ Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"]. Returns: list/string: server endpoints """ if to_string: return ",".join(self._role_maker.get_pserver_endpoints()) else: return self._role_maker.get_pserver_endpoints() def is_server(self): """ Check whether the node is an instance of server. Returns: bool: True if this is a node of server, False if not """ return self._role_maker.is_server() def is_xpu(self): """ Check whether the node is an instance of server. Returns: bool: True if this is a node of server, False if not. """ return self._role_maker.is_xpu() def split_files(self, files): """ split files before distributed training, example 1: files is [a, b, c ,d, e] and trainer_num = 2, then trainer 0 gets [a, b, c] and trainer 1 gets [d, e]. example 2: files is [a, b], and trainer_num = 3, then trainer 0 gets [a], trainer 1 gets [b], trainer 2 gets [] Args: files(list): file list need to be read. Returns: list: files belongs to this worker. """ if not isinstance(files, list): raise TypeError("files should be a list of file need to be read.") trainer_id = self.worker_index() trainers = self.worker_num() remainder = len(files) % trainers blocksize = len(files) // trainers blocks = [blocksize] * trainers for i in range(remainder): blocks[i] += 1 trainer_files = [[]] * trainers begin = 0 for i in range(trainers): trainer_files[i] = files[begin:begin + blocks[i]] begin += blocks[i] return trainer_files[trainer_id] def init(self, role_maker=None): """ should be called only once in user's python scripts, init() will initialize RoleMaker which is used for identifying current node's role, e.g. worker, server, etc. Args: role_maker(RoleMakerBase): subclass of RoleMakerBase. Returns: None """ self._executor = Executor(fluid.CPUPlace()) if role_maker and not isinstance(role_maker, RoleMakerBase): from paddle.fluid.incubate.fleet.base.role_maker import RoleMakerBase as RoleMakerBaseIncubate if role_maker and not isinstance(role_maker, RoleMakerBaseIncubate): raise TypeError( "role_maker must be an instance of RoleMakerBase") self._role_maker = role_maker self._role_maker.generate_role() self._is_initialized = True def all_reduce_worker(self, input, output): """ all reduce between workers, only support array of one dim. Args: input(list|numpy.array): array of one dim output(list|numpy.array): array of one dim """ self._role_maker.all_reduce_worker(input, output) def barrier_worker(self): """ barrier between workers """ self._role_maker.barrier_worker() @abc.abstractmethod def init_worker(self): pass @abc.abstractmethod def init_server(self, model_dir=None, **kwargs): pass @abc.abstractmethod def run_server(self): pass @abc.abstractmethod def stop_worker(self): pass @abc.abstractmethod def distributed_optimizer(self, optimizer, strategy=None): pass @abc.abstractmethod def save_inference_model(self, executor, dirname, feeded_var_names, target_vars, main_program=None, export_for_deployment=True): pass @abc.abstractmethod def save_persistables(self, executor, dirname, main_program=None): pass class DistributedOptimizer(object): """ DistributedOptimizer is a wrapper for paddle.fluid.optimizer A user should pass a paddle.fluid.optimizer to DistributedOptimizer minimize() function is implemented. DistributedOptimizer is the starting point for a user who wants to run distributed training. The optimized information will be stored in Fleet() instance who holds the global information about current distributed training. Args: optimizer(Optimizer): subclass of Optimizer. strategy(any): the user define config for Optimizer. Returns: None """ __metaclass__ = abc.ABCMeta def __init__(self, optimizer, strategy=None): if not isinstance(optimizer, SGD.__bases__) \ and not isinstance(optimizer, OptimizerWithMixedPrecision) \ and not isinstance(optimizer, SGD_v2.__base__): raise TypeError("optimizer must be an instance of Optimizer") self._optimizer = optimizer self._strategy = strategy @abc.abstractmethod def backward(self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None): """ First part of `minimize`, do auto-diff to append backward ops for the current program. Args: loss (Variable): loss variable to run optimizations. startup_program (Program): startup_program for initializing parameters in `parameter_list`. parameter_list (list): list of Variables to update. no_grad_set (set|None): set of Variables should be ignored. callbacks (list|None): list of callables to run when appending backward operator for one parameter. Return: list: list of (param, grad) pair, grad is the output of backward. Examples: See examples in `apply_gradients`. """ pass @abc.abstractmethod def apply_gradients(self, params_grads): """ Second part of `minimize`, appending optimization operators for given `params_grads` pairs. Args: params_grads (list): list of (param, grad) pair to do optimization. Returns: list: A list of operators appended to the current program. Examples: .. code-block:: python loss = network() optimizer = fluid.optimizer.SGD(learning_rate=0.1) params_grads = optimizer.backward(loss) # you may append operations for params_grads here # ... optimizer.apply_gradients(params_grads) """ pass @abc.abstractmethod def minimize(self, losses, scopes=None, startup_programs=None, parameter_list=None, no_grad_set=None): """ Add operations to minimize `loss` by updating `parameter_list`. This method combines interface `backward()` and `apply_gradients()` into one. Args: losses (Variable|Variable List): loss variable to run optimizations. scopes (Scope| Scope List): scope instance. startup_programs (Program|Program List): startup_program for initializing parameters in `parameter_list`. parameter_list (list): list of Variables to update. no_grad_set (set|None): set of Variables should be ignored. Returns: tuple: (optimize_ops, params_grads) which are, list of operators appended; and list of (param, grad) Variables pair for optimization. """ pass