/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/segment_pooling.h" #include "paddle/fluid/platform/macros.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template void SegmentKernelLaunchHelper(const framework::ExecutionContext& context) { auto* input = context.Input("X"); auto* segment = context.Input("SegmentIds"); auto* output = context.Output("Out"); std::string pooltype = context.Attr("pooltype"); Tensor* summed_ids = nullptr; int64_t num_indices = segment->numel(); PADDLE_ENFORCE_EQ( num_indices, input->dims()[0], platform::errors::InvalidArgument( "Segment_ids should be the same size as dimension 0 of input X.")); PADDLE_ENFORCE_EQ(num_indices, segment->dims()[0], platform::errors::InvalidArgument( "Segment_ids should be 1-D tensor, or it's other " "dimension size is 1. Segment_ids's shape is: [%s].", segment->dims())); if (input->numel() == 0 || segment->numel() == 0) { return; } bool cpu_place = context.GetPlace().type() == typeid(platform::CPUPlace); if (cpu_place) { auto dims = input->dims(); auto* segment_ids = segment->data(); dims[0] = static_cast(segment_ids[segment->numel() - 1] + 1); PADDLE_ENFORCE_GT( dims[0], 0, platform::errors::InvalidArgument( "Segment ids must be >= 0, but got last id %d", dims[0])); output->Resize({dims}); output->mutable_data(context.GetPlace()); math::SetConstant set_zero; auto& dev_ctx = context.template device_context(); set_zero(dev_ctx, output, static_cast(0)); } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (!cpu_place) { Tensor length; length.mutable_data(framework::make_ddim({1}), platform::CPUPlace()); IndexT* length_data = length.data(); const IndexT* segment_ids = segment->data(); #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS( hipMemcpy(length_data, segment_ids + num_indices - 1, sizeof(IndexT), hipMemcpyDeviceToHost)); #else PADDLE_ENFORCE_CUDA_SUCCESS( cudaMemcpy(length_data, segment_ids + num_indices - 1, sizeof(IndexT), cudaMemcpyDeviceToHost)); #endif IndexT length_host = length_data[0]; length_host++; PADDLE_ENFORCE_GT( length_host, 0, platform::errors::InvalidArgument( "Segment ids must be >= 0, but got last id %d", length_data[0])); auto dims = input->dims(); dims[0] = static_cast(length_host); output->Resize({dims}); output->mutable_data(context.GetPlace()); T init_value = 0; if (pooltype == "MAX") { init_value = static_cast(-FLT_MAX); } else if (pooltype == "MIN") { init_value = static_cast(FLT_MAX); } math::SetConstant setconst; auto& dev_ctx = context.template device_context(); setconst(dev_ctx, output, static_cast(init_value)); // the gpu kernel of mean pool record the counts of segment_ids if (pooltype == "MEAN") { summed_ids = context.Output("SummedIds"); summed_ids->Resize({dims[0], 1}); summed_ids->mutable_data(context.GetPlace()); setconst(dev_ctx, summed_ids, static_cast(1e-12)); } } #endif SegmentPoolFunctor pool; pool(context.template device_context(), *input, *segment, output, summed_ids, pooltype); } template class SegmentPoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* segment = context.Input("SegmentIds"); auto index_type = segment->type(); if (index_type == framework::proto::VarType::INT32) { SegmentKernelLaunchHelper(context); } else if (index_type == framework::proto::VarType::INT64) { SegmentKernelLaunchHelper(context); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Unsupported index type, Expected int, int64, but got %s.", index_type)); } } }; template class SegmentPoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* input = context.Input("X"); auto* output = context.Input("Out"); auto* segment = context.Input("SegmentIds"); auto* out_g = context.Input(framework::GradVarName("Out")); auto* in_g = context.Output(framework::GradVarName("X")); std::string pooltype = context.Attr("pooltype"); const Tensor* summed_ids = nullptr; if (pooltype == "MEAN") { summed_ids = context.Input("SummedIds"); } in_g->mutable_data(context.GetPlace()); math::SetConstant set_zero; auto& dev_ctx = context.template device_context(); set_zero(dev_ctx, in_g, static_cast(0)); auto index_type = segment->type(); if (index_type == framework::proto::VarType::INT32) { SegmentPoolGradFunctor pool; pool(context.template device_context(), *input, *output, *out_g, *segment, in_g, summed_ids, pooltype); } else if (index_type == framework::proto::VarType::INT64) { SegmentPoolGradFunctor pool; pool(context.template device_context(), *input, *output, *out_g, *segment, in_g, summed_ids, pooltype); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Unsupported index type, Expected int, int64, but got %s.", index_type)); } } }; } // namespace operators } // namespace paddle