import unittest import paddle.v2.fluid.framework as framework import paddle.v2.fluid.optimizer as optimizer from paddle.v2.fluid.backward import append_backward_ops class TestOptimizer(unittest.TestCase): def test_sgd_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01) opts, _ = sgd_optimizer.minimize(mean_out, init_program) self.assertEqual(len(opts), 1) sgd_op = opts[0] self.assertEqual(sgd_op.type, "sgd") def test_sgd_optimizer_with_global_step(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) global_step = block.create_var( dtype="float32", shape=[1], lod_level=0, name="step") learning_rate = 0.01 sgd_optimizer = optimizer.SGDOptimizer( learning_rate=learning_rate, global_step=global_step) opts, _ = sgd_optimizer.minimize(mean_out, init_program) self.assertEqual(len(opts), 2) sgd_op = opts[0] self.assertEqual(sgd_op.type, "sgd") increment_op = opts[1] self.assertEqual(increment_op.type, "increment") # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 1) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) class TestMomentumOptimizer(unittest.TestCase): class MockMomentum(optimizer.MomentumOptimizer): def get_accumulators(self): return self._accumulators def get_velocity_str(self): return self._velocity_acc_str def test_vanilla_momentum_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) learning_rate = 0.01 momentum_optimizer = self.MockMomentum( learning_rate=learning_rate, momentum=0.2) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) opts = momentum_optimizer.create_optimization_pass( params_grads, mul_out, init_program) self.assertEqual(len(opts), 1) sgd_op = opts[0] self.assertEqual(sgd_op.type, "momentum") self.assertFalse(sgd_op.attr('use_nesterov')) # Check accumulators accumulators = momentum_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators) velocity_acc = accumulators[momentum_optimizer.get_velocity_str()] self.assertEqual(len(velocity_acc), 1) self.assertTrue(mul_x.name in velocity_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), 0.0) def test_nesterov_momentum_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 momentum_optimizer = self.MockMomentum( learning_rate=learning_rate, momentum=0.2, use_nesterov=True) params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) opts = momentum_optimizer.create_optimization_pass( params_grads, mul_out, init_program) self.assertEqual(len(opts), 1) sgd_op = opts[0] self.assertEqual(sgd_op.type, "momentum") self.assertTrue(sgd_op.attr('use_nesterov')) # Check accumulators accumulators = momentum_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators) velocity_acc = accumulators[momentum_optimizer.get_velocity_str()] self.assertEqual(len(velocity_acc), 1) self.assertTrue(mul_x.name in velocity_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), 0.0) class TestAdagradOptimizer(unittest.TestCase): class MockAdagrad(optimizer.AdagradOptimizer): def get_accumulators(self): return self._accumulators def get_moment_str(self): return self._moment_acc_str def test_adagrad_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 adagrad_optimizer = self.MockAdagrad( learning_rate=learning_rate, epsilon=1.0e-6) params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0) opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out, init_program) self.assertEqual(len(opts), 1) adagrad_op = opts[0] self.assertEqual(adagrad_op.type, "adagrad") # Check accumulators accumulators = adagrad_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators) moment_acc = accumulators[adagrad_optimizer.get_moment_str()] self.assertEqual(len(moment_acc), 1) self.assertTrue(mul_x.name in moment_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), 0.0) class TestAdamOptimizer(unittest.TestCase): class MockAdam(optimizer.AdamOptimizer): def get_accumulators(self): return self._accumulators def get_moment1_str(self): return self._moment1_acc_str def get_moment2_str(self): return self._moment2_acc_str def test_adam_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 adam_optimizer = self.MockAdam( learning_rate=learning_rate, beta1=0.9, beta2=0.999) params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adam_optimizer.get_accumulators()), 0) opts = adam_optimizer.create_optimization_pass(params_grads, mul_out, init_program) self.assertEqual(len(opts), 3) adam_op = opts[0] self.assertEqual(adam_op.type, "adam") # Check accumulators accumulators = adam_optimizer.get_accumulators() self.assertEqual(len(accumulators), 2) self.assertTrue(adam_optimizer.get_moment1_str() in accumulators) self.assertTrue(adam_optimizer.get_moment2_str() in accumulators) moment1_acc = accumulators[adam_optimizer.get_moment1_str()] moment2_acc = accumulators[adam_optimizer.get_moment2_str()] self.assertEqual(len(moment1_acc), 1) self.assertEqual(len(moment2_acc), 1) self.assertTrue(mul_x.name in moment1_acc) self.assertTrue(mul_x.name in moment2_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 5) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) class TestAdamaxOptimizer(unittest.TestCase): class MockAdamax(optimizer.AdamaxOptimizer): def get_accumulators(self): return self._accumulators def get_moment_str(self): return self._moment_acc_str def get_inf_norm_str(self): return self._inf_norm_acc_str def test_adamax_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 adamax_optimizer = self.MockAdamax( learning_rate=learning_rate, beta1=0.9, beta2=0.999) params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adamax_optimizer.get_accumulators()), 0) opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out, init_program) self.assertEqual(len(opts), 2) adam_op = opts[0] self.assertEqual(adam_op.type, "adamax") # Check accumulators accumulators = adamax_optimizer.get_accumulators() self.assertEqual(len(accumulators), 2) self.assertTrue(adamax_optimizer.get_moment_str() in accumulators) self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators) moment_acc = accumulators[adamax_optimizer.get_moment_str()] inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()] self.assertEqual(len(moment_acc), 1) self.assertEqual(len(inf_norm_acc), 1) self.assertTrue(mul_x.name in moment_acc) self.assertTrue(mul_x.name in inf_norm_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 4) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) class TestDecayedAdagradOptimizer(unittest.TestCase): class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer): def get_accumulators(self): return self._accumulators def get_moment_str(self): return self._moment_acc_str def test_decayed_adagrad_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 decayed_adagrad_optimizer = self.MockDecayedAdagrad( learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6) params_grads = append_backward_ops(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0) opts = decayed_adagrad_optimizer.create_optimization_pass( params_grads, mul_out, init_program) self.assertEqual(len(opts), 1) decayed_adagrad_op = opts[0] self.assertEqual(decayed_adagrad_op.type, "decayed_adagrad") # Check accumulators accumulators = decayed_adagrad_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue( decayed_adagrad_optimizer.get_moment_str() in accumulators) moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()] self.assertEqual(len(moment_acc), 1) self.assertTrue(mul_x.name in moment_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), 0.0) if __name__ == '__main__': unittest.main()