# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test fleet metric.""" from __future__ import print_function import numpy as np import paddle import paddle.fluid as fluid import os import unittest import numpy as np import paddle.distributed.fleet.metrics.metric as metric import paddle.distributed.fleet as fleet from paddle.distributed.fleet.base.util_factory import UtilBase paddle.enable_static() class TestFleetMetric(unittest.TestCase): """Test cases for fleet metric.""" def setUp(self): """Set up, set envs.""" class FakeUtil(UtilBase): def __init__(self, fake_fleet): super(UtilBase, self).__init__() self.fleet = fake_fleet def all_reduce(self, input, mode="sum", comm_world="worker"): input = np.array(input) input_shape = input.shape input_list = input.reshape(-1).tolist() self.fleet._barrier(comm_world) ans = self.fleet._all_reduce(input_list, mode) output = np.array(ans).reshape(input_shape) return output class FakeFleet: """Fake fleet only for test.""" def __init__(self): """Init.""" self.gloo = fluid.core.Gloo() self.gloo.set_rank(0) self.gloo.set_size(1) self.gloo.set_prefix("123") self.gloo.set_iface("lo") self.gloo.set_hdfs_store("./tmp_test_metric", "", "") self.gloo.init() def _all_reduce(self, input, mode="sum"): """All reduce using gloo.""" ans = self.gloo.all_reduce(input, mode) return ans def _barrier(self, comm_world="worker"): """Fake barrier, do nothing.""" pass self.util = FakeUtil(FakeFleet()) def test_metric_1(self): """Test cases for metrics.""" train = fluid.Program() startup = fluid.Program() with fluid.program_guard(train, startup): t = fluid.layers.create_global_var( shape=[1, 1], value=1, dtype='int64', persistable=True, force_cpu=True) t1 = fluid.layers.create_global_var( shape=[1, 1], value=1, dtype='int64', persistable=True, force_cpu=True) place = fluid.CPUPlace() exe = fluid.Executor(place) scope = fluid.Scope() with fluid.scope_guard(scope): exe.run(startup) metric.sum(t, scope, self.util) metric.max(t, scope, self.util) metric.min(t, scope, self.util) metric.auc(t, t1, scope, self.util) metric.mae(t1, 3, scope, self.util) metric.rmse(t1, 3, scope, self.util) metric.mse(t1, 3, scope, self.util) metric.acc(t, t1, scope, self.util) metric.sum(str(t.name), scope, self.util) metric.max(str(t.name), scope, self.util) metric.min(str(t.name), scope, self.util) metric.auc(str(t1.name), str(t.name), scope, self.util) metric.mae(str(t1.name), 3, scope, self.util) metric.rmse(str(t1.name), 3, scope, self.util) metric.mse(str(t1.name), 3, scope, self.util) metric.acc(str(t.name), str(t1.name), scope, self.util) arr = np.array([1, 2, 3, 4]) metric.sum(arr, util=self.util) metric.max(arr, util=self.util) metric.min(arr, util=self.util) arr1 = np.array([[1, 2, 3, 4]]) arr2 = np.array([[1, 2, 3, 4]]) arr3 = np.array([1, 2, 3, 4]) metric.auc(arr1, arr2, util=self.util) metric.mae(arr, 3, util=self.util) metric.rmse(arr, 3, util=self.util) metric.mse(arr, 3, util=self.util) metric.acc(arr, arr3, util=self.util) if __name__ == "__main__": unittest.main()