import logging import paddle.v2.framework.core as core import unittest import numpy as np from paddle.v2.framework.op import Operator, RecurrentOp from op_test import get_numeric_gradient def py_sigmoid(x): return 1. / (1. + np.exp(-x)) class PySimpleRNN(object): ''' A simple implementation of RNN based on numpy, to futhur test RecurrentOp's alogorithm ''' def __init__(self, input_dim=30, batch_size=50, weight_dim=15, sent_len=11): self.x = np.random.normal(size=(sent_len, batch_size, input_dim)).astype("float32") self.W = np.random.normal(size=(input_dim, input_dim)).astype("float32") self.U = np.random.normal(size=(input_dim, input_dim)).astype("float32") self.h_boot = np.random.normal(size=(batch_size, input_dim)).astype("float32") # memories self.mems = [ np.zeros(shape=(batch_size, input_dim)).astype("float32") for i in range(sent_len) ] def forward(self): xs = self.segment_inputs() for step_id in range(self.x.shape[0]): self.step(step_id, xs[step_id]) return self.concat_outputs() def segment_inputs(self): return [self.x[i] for i in range(self.x.shape[0])] def concat_outputs(self): return np.array(self.mems).astype("float32") def step(self, step_id, x): ''' run a step ''' mem = self.mems[step_id] if step_id > 0: pre_mem = self.mems[step_id - 1] else: pre_mem = self.h_boot xW = np.matmul(x, self.W).astype("float32") hU = np.matmul(pre_mem, self.U).astype("float32") sum = xW + hU self.mems[step_id] = py_sigmoid(sum) class PySimpleRNNTest(unittest.TestCase): def setUp(self): self.rnn = PySimpleRNN() def test_forward(self): output = self.rnn.forward() def create_tensor(scope, name, shape, np_data): tensor = scope.new_var(name).get_tensor() tensor.set_dims(shape) tensor.set(np_data, core.CPUPlace()) return tensor class RecurrentOpTest(unittest.TestCase): ''' Test RNNOp equation: h_t = \sigma (W x_t + U h_{t-1}) weights: - W - U vars: - x memories: - h outputs: - h ''' input_dim = 30 batch_size = 50 weight_dim = 15 sent_len = 11 def setUp(self): self.py_rnn = PySimpleRNN(self.input_dim, self.batch_size, self.weight_dim, self.sent_len) def forward(self): self.scope = core.Scope() self.create_global_variables() self.create_rnn_op() self.create_step_net() ctx = core.DeviceContext.create(core.CPUPlace()) self.rnnop.run(self.scope, ctx) return np.array(self.scope.find_var("h@mem").get_tensor()).astype( "float32") def create_global_variables(self): # create inlink x_np_data = self.py_rnn.x create_tensor(self.scope, "x", [self.sent_len, self.batch_size, self.input_dim], x_np_data) W_np_data = self.py_rnn.W create_tensor(self.scope, "W", [self.input_dim, self.input_dim], W_np_data) U_np_data = self.py_rnn.U create_tensor(self.scope, "U", [self.input_dim, self.input_dim], U_np_data) h_boot_np_data = self.py_rnn.h_boot create_tensor(self.scope, "h_boot", [self.batch_size, self.input_dim], h_boot_np_data) self.scope.new_var("step_scopes") self.scope.new_var("h@mem") def create_rnn_op(self): # create RNNOp self.rnnop = RecurrentOp( # inputs inlinks=["x"], boot_memories=["h_boot"], step_net="stepnet", # outputs outlinks=["h@mem"], step_scopes="step_scopes", # attributes pre_memories=["h@pre"], memories=["h@mem"]) def create_step_net(self): stepnet = core.Net.create() x_fc_op = Operator("mul", X="x", Y="W", Out="Wx") h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh") sum_op = Operator("sum", X=["Wx", "Uh"], Out="sum") sig_op = Operator("sigmoid", X="sum", Y="h@mem") for op in [x_fc_op, h_fc_op, sum_op, sig_op]: stepnet.append_op(op) stepnet.complete_add_op(True) self.rnnop.set_stepnet(stepnet) def test_forward(self): print 'test recurrent op forward' pd_output = self.forward() py_output = self.py_rnn.forward() print 'pd_output', pd_output print print 'py_output', py_output self.assertEqual(pd_output.shape, py_output.shape) self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all()) class RecurrentGradientOpTest(unittest.TestCase): def create_forward_op(self): self.forward_op = RecurrentOp( # inputs inlinks=["x"], boot_memories=["h_boot"], step_net="stepnet", # outputs outlinks=["h"], step_scopes="step_scopes", # attributes pre_memories=["h@pre"], memories=["h@alias"]) # create a stepnet for RNN stepnet = core.Net.create() x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx") h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh") sum_op = Operator("sum", X=["Wx", "Uh"], Out="sum") sig_op = Operator("sigmoid", X="sum", Y="h@alias") for op in [x_fc_op, h_fc_op, sum_op, sig_op]: stepnet.append_op(op) stepnet.complete_add_op(True) self.forward_op.set_stepnet(stepnet) def create_gradient_op(self): a = set() backward_op = core.RecurrentOp.backward(self.forward_op, a) def test_grad(self): self.create_forward_op() self.create_gradient_op() if __name__ == '__main__': unittest.main()