# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest class TestExpandOpRank1(OpTest): def setUp(self): self.op_type = "expand" self.inputs = {'X': np.random.random(12).astype("float32")} self.attrs = {'expand_times': [2]} output = np.tile(self.inputs['X'], 2) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestExpandOpRank1_tensor_attr(OpTest): def setUp(self): self.op_type = "expand" self.inputs = { 'X': np.random.random(12).astype("float32"), 'expand_times_tensor': [('x1', np.ones((1)).astype('int32') * 2)] } self.attrs = {} output = np.tile(self.inputs['X'], 2) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', no_grad_set=set('x1')) class TestExpandOpRank2_Corner(OpTest): def setUp(self): self.op_type = "expand" self.inputs = {'X': np.random.random((12, 14)).astype("float32")} self.attrs = {'expand_times': [1, 1]} output = np.tile(self.inputs['X'], (1, 1)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestExpandOpRank2_Corner_tensor_attr(OpTest): def setUp(self): self.op_type = "expand" self.inputs = { 'X': np.random.random((12, 14)).astype("float32"), 'expand_times_tensor': [('x1', np.ones((1)).astype('int32')), ('x2', np.ones((1)).astype('int32'))] } self.attrs = {} output = np.tile(self.inputs['X'], (1, 1)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestExpandOpRank2(OpTest): def setUp(self): self.op_type = "expand" self.inputs = {'X': np.random.random((12, 14)).astype("float32")} self.attrs = {'expand_times': [2, 3]} output = np.tile(self.inputs['X'], (2, 3)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestExpandOpRank2_attr_tensor(OpTest): def setUp(self): self.op_type = "expand" self.inputs = { 'X': np.random.random((12, 14)).astype("float32"), 'expand_times_tensor': [('x1', np.ones((1)).astype('int32') * 2), ('x2', np.ones((1)).astype('int32') * 3)] } self.attrs = {} output = np.tile(self.inputs['X'], (2, 3)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestExpandOpRank3_Corner(OpTest): def setUp(self): self.op_type = "expand" self.inputs = {'X': np.random.random((2, 4, 5)).astype("float32")} self.attrs = {'expand_times': [1, 1, 1]} output = np.tile(self.inputs['X'], (1, 1, 1)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestExpandOpRank3(OpTest): def setUp(self): self.op_type = "expand" self.inputs = {'X': np.random.random((2, 4, 5)).astype("float32")} self.attrs = {'expand_times': [2, 1, 4]} output = np.tile(self.inputs['X'], (2, 1, 4)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestExpandOpRank4(OpTest): def setUp(self): self.op_type = "expand" self.inputs = {'X': np.random.random((2, 4, 5, 7)).astype("float32")} self.attrs = {'expand_times': [3, 2, 1, 2]} output = np.tile(self.inputs['X'], (3, 2, 1, 2)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestExpandOpInteger(OpTest): def setUp(self): self.op_type = "expand" self.inputs = { 'X': np.random.randint( 10, size=(2, 4, 5)).astype("int32") } self.attrs = {'expand_times': [2, 1, 4]} output = np.tile(self.inputs['X'], (2, 1, 4)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() class TestExpandOpBoolean(OpTest): def setUp(self): self.op_type = "expand" self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")} self.attrs = {'expand_times': [2, 1, 4]} output = np.tile(self.inputs['X'], (2, 1, 4)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() if __name__ == "__main__": unittest.main()