/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #ifndef _USE_MATH_DEFINES #define _USE_MATH_DEFINES #endif #include #include #include "paddle/phi/common/complex.h" #include "paddle/phi/core/hostdevice.h" namespace phi { namespace funcs { template struct cond { static constexpr bool value = B; using type = T; }; template struct eval_if { using type = typename TrueF::type; }; template struct eval_if { using type = typename FalseF::type; }; template using eval_if_t = typename eval_if::type; template struct select { using type = eval_if_t>; }; template struct select { using type = T; }; template struct select> { // last one had better be true! static_assert(B, "No match select type!"); using type = T; }; template using select_t = typename select::type; template using Real = select_t>::value, float>, cond>::value, double>, T>; template using Complex = typename std::enable_if::value>::type; // There are no NoComplex cases now, implement later if needed template using NoComplex = typename std::enable_if::value>::type; template using EnableComplex = typename std::enable_if< std::is_same>::value || std::is_same>::value>::type; template using DisableComplex = typename std::enable_if< !std::is_same>::value && !std::is_same>::value>::type; template struct RealFunctor; template struct RealFunctor>> { public: RealFunctor(const T* input, Real* output, int64_t numel) : input_(input), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { output_[idx] = input_[idx].real; } private: const T* input_; Real* output_; int64_t numel_; }; template struct ImagFunctor; template struct ImagFunctor>> { ImagFunctor(const T* input, Real* output, int64_t numel) : input_(input), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { output_[idx] = input_[idx].imag; } const T* input_; Real* output_; int64_t numel_; }; template struct AbsFunctor; template struct AbsFunctor>> { AbsFunctor(const T* input, Real* output, int64_t numel) : input_(input), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { output_[idx] = abs(input_[idx]); } const T* input_; Real* output_; int64_t numel_; }; template struct AbsFunctor>> { AbsFunctor(const T* input, T* output, int64_t numel) : input_(input), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { output_[idx] = std::abs(input_[idx]); } const T* input_; T* output_; int64_t numel_; }; template struct AbsGradFunctor { AbsGradFunctor(const Real* dout, const T* x, T* output, int64_t numel) : dout_(dout), x_(x), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { if (x_[idx] == T(0)) { output_[idx] = T(0); } else { output_[idx] = T(dout_[idx]) * (x_[idx] / T(std::abs(x_[idx]))); } } const Real* dout_; const T* x_; T* output_; int64_t numel_; }; template <> struct AbsGradFunctor> { AbsGradFunctor(const float* dout, const phi::dtype::complex* x, phi::dtype::complex* output, int64_t numel) : dout_(dout), x_(x), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { if (x_[idx] == phi::dtype::complex(0)) { output_[idx] = phi::dtype::complex(0); } else { output_[idx] = phi::dtype::complex(dout_[idx]) * (x_[idx] / phi::dtype::complex(abs(x_[idx]))); } } const float* dout_; const phi::dtype::complex* x_; phi::dtype::complex* output_; int64_t numel_; }; template <> struct AbsGradFunctor> { AbsGradFunctor(const double* dout, const phi::dtype::complex* x, phi::dtype::complex* output, int64_t numel) : dout_(dout), x_(x), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { if (x_[idx] == phi::dtype::complex(0)) { output_[idx] = phi::dtype::complex(0); } else { output_[idx] = phi::dtype::complex(dout_[idx]) * (x_[idx] / phi::dtype::complex(abs(x_[idx]))); } } const double* dout_; const phi::dtype::complex* x_; phi::dtype::complex* output_; int64_t numel_; }; template struct AbsGradGradFunctor { AbsGradGradFunctor(const T* ddx, const T* x, T* output, int64_t numel) : ddx_(ddx), x_(x), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { if (x_[idx] == T(0)) { output_[idx] = T(0); } else { output_[idx] = T(ddx_[idx]) * x_[idx] / T(std::abs(x_[idx])); } } const T* ddx_; const T* x_; T* output_; int64_t numel_; }; template <> struct AbsGradGradFunctor> { AbsGradGradFunctor(const phi::dtype::complex* ddx, const phi::dtype::complex* x, phi::dtype::complex* output, int64_t numel) : ddx_(ddx), x_(x), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { if (x_[idx] == phi::dtype::complex(0)) { output_[idx] = phi::dtype::complex(0); } else { output_[idx] = phi::dtype::complex(ddx_[idx]) * x_[idx] / phi::dtype::complex(abs(x_[idx])); } } const phi::dtype::complex* ddx_; const phi::dtype::complex* x_; phi::dtype::complex* output_; int64_t numel_; }; template <> struct AbsGradGradFunctor> { AbsGradGradFunctor(const phi::dtype::complex* ddx, const phi::dtype::complex* x, phi::dtype::complex* output, int64_t numel) : ddx_(ddx), x_(x), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { if (x_[idx] == phi::dtype::complex(0)) { output_[idx] = phi::dtype::complex(0); } else { output_[idx] = phi::dtype::complex(ddx_[idx]) * x_[idx] / phi::dtype::complex(abs(x_[idx])); } } const phi::dtype::complex* ddx_; const phi::dtype::complex* x_; phi::dtype::complex* output_; int64_t numel_; }; template struct RealToComplexFunctor; template struct RealToComplexFunctor>> { RealToComplexFunctor(const Real* input, T* output, int64_t numel) : input_(input), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { output_[idx].real = input_[idx]; output_[idx].imag = 0; } const Real* input_; T* output_; int64_t numel_; }; template struct ImagToComplexFunctor; template struct ImagToComplexFunctor>> { ImagToComplexFunctor(const Real* input, T* output, int64_t numel) : input_(input), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { output_[idx].real = 0; output_[idx].imag = input_[idx]; } const Real* input_; T* output_; int64_t numel_; }; template struct RealImagToComplexFunctor; template struct RealImagToComplexFunctor>> { RealImagToComplexFunctor(const Real* input_real, const Real* input_imag, T* output, int64_t numel) : input_real_(input_real), input_imag_(input_imag), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { output_[idx].real = input_real_[idx]; output_[idx].imag = input_imag_[idx]; } const Real* input_real_; const Real* input_imag_; T* output_; int64_t numel_; }; template struct ConjFunctor; template struct ConjFunctor> { ConjFunctor(const T* input, int64_t numel, T* output) : input_(input), numel_(numel), output_(output) {} HOSTDEVICE void operator()(size_t idx) const { output_[idx] = T(input_[idx].real, -input_[idx].imag); } const T* input_; int64_t numel_; T* output_; }; template struct ConjFunctor> { ConjFunctor(const T* input, int64_t numel, T* output) : input_(input), numel_(numel), output_(output) {} HOSTDEVICE void operator()(size_t idx) const { output_[idx] = input_[idx]; } const T* input_; int64_t numel_; T* output_; }; template struct AngleFunctor; // angel function for complex template struct AngleFunctor>> { AngleFunctor(const T* input, phi::funcs::Real* output, int64_t numel) : input_(input), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { output_[idx] = arg(input_[idx]); } const T* input_; phi::funcs::Real* output_; int64_t numel_; }; // angel function for real template struct AngleFunctor>> { AngleFunctor(const T* input, T* output, int64_t numel) : input_(input), output_(output), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { output_[idx] = input_[idx] < static_cast(0) ? M_PI : 0; } const T* input_; T* output_; int64_t numel_; }; template struct AngleGradFunctor; // angle grad for complex template struct AngleGradFunctor>> { AngleGradFunctor(const phi::funcs::Real* dout, const T* x, T* dx, int64_t numel) : dout_(dout), x_(x), dx_(dx), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { if (x_[idx] == T(0)) { dx_[idx] = T(0); } else { const phi::funcs::Real r_square = x_[idx].real * x_[idx].real + x_[idx].imag * x_[idx].imag; dx_[idx] = T(-dout_[idx] * x_[idx].imag / r_square, dout_[idx] * x_[idx].real / r_square); } } const phi::funcs::Real* dout_; const T* x_; T* dx_; int64_t numel_; }; // angle grad for real template struct AngleGradFunctor>> { AngleGradFunctor(const phi::funcs::Real* dout, const T* x, T* dx, int64_t numel) : dout_(dout), x_(x), dx_(dx), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { dx_[idx] = 0; } const phi::funcs::Real* dout_; const T* x_; T* dx_; int64_t numel_; }; } // namespace funcs } // namespace phi