// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #ifdef PADDLE_WITH_CUDA #include #endif #if defined(__CUDACC__) && CUDA_VERSION >= 11000 #define PADDLE_CUDA_BF16 #include #endif #if !defined(_WIN32) #define PADDLE_ALIGN(x) __attribute__((aligned(x))) #else #define PADDLE_ALIGN(x) __declspec(align(x)) #endif #if (defined(__CUDACC__) || defined(__HIPCC__)) #define HOSTDEVICE __host__ __device__ #define DEVICE __device__ #define HOST __host__ #else #define HOSTDEVICE #define DEVICE #define HOST #endif namespace phi { namespace dtype { struct PADDLE_ALIGN(2) bfloat16 { public: uint16_t x; // Constructors bfloat16() = default; bfloat16(const bfloat16& o) = default; bfloat16& operator=(const bfloat16& o) = default; bfloat16(bfloat16&& o) = default; bfloat16& operator=(bfloat16&& o) = default; ~bfloat16() = default; HOSTDEVICE inline explicit bfloat16(float val) { #ifdef PADDLE_WITH_HIP uint32_t res = 0; uint32_t* tempRes; // We should be using memcpy in order to respect the strict aliasing rule // but it fails in the HIP environment. tempRes = reinterpret_cast(&val); res = *tempRes; x = res >> 16; #else #if defined(PADDLE_CUDA_BF16) __nv_bfloat16 tmp = __float2bfloat16(val); x = *reinterpret_cast(&tmp); #else std::memcpy(&x, reinterpret_cast(&val) + 2, 2); #endif #endif } #if defined(PADDLE_CUDA_BF16) HOSTDEVICE inline explicit bfloat16(const __nv_bfloat16& val) { x = *reinterpret_cast(&val); // NOLINT } #endif template HOSTDEVICE inline explicit bfloat16(const T& val) : x(bfloat16(static_cast(val)).x) {} // Assignment operators #if defined(PADDLE_CUDA_BF16) HOSTDEVICE inline bfloat16& operator=(const __nv_bfloat16& val) { x = *reinterpret_cast(&val); // NOLINT return *this; } #endif HOSTDEVICE inline bfloat16& operator=(bool b) { x = b ? 0x3f80 : 0; return *this; } HOSTDEVICE inline bfloat16& operator=(int8_t val) { x = bfloat16(val).x; return *this; } HOSTDEVICE inline bfloat16& operator=(uint8_t val) { x = bfloat16(val).x; return *this; } HOSTDEVICE inline bfloat16& operator=(int16_t val) { x = bfloat16(val).x; return *this; } HOSTDEVICE inline bfloat16& operator=(uint16_t val) { x = bfloat16(val).x; return *this; } HOSTDEVICE inline bfloat16& operator=(int32_t val) { x = bfloat16(val).x; return *this; } HOSTDEVICE inline bfloat16& operator=(uint32_t val) { x = bfloat16(val).x; return *this; } HOSTDEVICE inline bfloat16& operator=(int64_t val) { x = bfloat16(val).x; return *this; } HOSTDEVICE inline bfloat16& operator=(uint64_t val) { x = bfloat16(val).x; return *this; } HOSTDEVICE inline bfloat16& operator=(float val) { x = bfloat16(val).x; return *this; } HOSTDEVICE inline bfloat16& operator=(double val) { x = bfloat16(val).x; return *this; } // Conversion opertors HOSTDEVICE inline explicit operator float() const { #ifdef PADDLE_WITH_HIP uint32_t res = 0; // We should be using memcpy in order to respect the strict aliasing rule // but it fails in the HIP environment. uint16_t temp = x; uint16_t* temp_ptr = reinterpret_cast(&temp); res = *temp_ptr; return res; #else #ifdef PADDLE_CUDA_BF16 return __bfloat162float(*reinterpret_cast(&x)); #else float val = 0.f; uint16_t temp = x; std::memcpy( reinterpret_cast(&val) + 2, reinterpret_cast(&temp), 2); return val; #endif #endif } #ifdef PADDLE_CUDA_BF16 HOSTDEVICE inline explicit operator __nv_bfloat16() const { return *reinterpret_cast(&x); } #endif HOSTDEVICE inline explicit operator bool() const { return (x & 0x7fff) != 0; } HOSTDEVICE inline explicit operator int8_t() const { return static_cast(static_cast(*this)); } HOSTDEVICE inline explicit operator uint8_t() const { return static_cast(static_cast(*this)); } HOSTDEVICE inline explicit operator int16_t() const { return static_cast(static_cast(*this)); } HOSTDEVICE inline explicit operator uint16_t() const { return static_cast(static_cast(*this)); } HOSTDEVICE inline explicit operator int32_t() const { return static_cast(static_cast(*this)); } HOSTDEVICE inline explicit operator uint32_t() const { return static_cast(static_cast(*this)); } HOSTDEVICE inline explicit operator int64_t() const { return static_cast(static_cast(*this)); } HOSTDEVICE inline explicit operator uint64_t() const { return static_cast(static_cast(*this)); } HOSTDEVICE inline explicit operator double() const { return static_cast(static_cast(*this)); } }; HOSTDEVICE inline bfloat16 operator+(const bfloat16& a, const bfloat16& b) { return bfloat16(static_cast(a) + static_cast(b)); } HOSTDEVICE inline bfloat16 operator-(const bfloat16& a, const bfloat16& b) { return bfloat16(static_cast(a) - static_cast(b)); } HOSTDEVICE inline bfloat16 operator*(const bfloat16& a, const bfloat16& b) { return bfloat16(static_cast(a) * static_cast(b)); } HOSTDEVICE inline bfloat16 operator/(const bfloat16& a, const bfloat16& b) { return bfloat16(static_cast(a) / static_cast(b)); } HOSTDEVICE inline bfloat16 operator-(const bfloat16& a) { bfloat16 res; res.x = a.x ^ 0x8000; return res; } HOSTDEVICE inline bfloat16& operator+=(bfloat16& a, // NOLINT const bfloat16& b) { a = bfloat16(static_cast(a) + static_cast(b)); return a; } HOSTDEVICE inline bfloat16& operator-=(bfloat16& a, // NOLINT const bfloat16& b) { a = bfloat16(static_cast(a) - static_cast(b)); return a; } HOSTDEVICE inline bfloat16& operator*=(bfloat16& a, // NOLINT const bfloat16& b) { a = bfloat16(static_cast(a) * static_cast(b)); return a; } HOSTDEVICE inline bfloat16& operator/=(bfloat16& a, // NOLINT const bfloat16& b) { a = bfloat16(static_cast(a) / static_cast(b)); return a; } HOSTDEVICE inline bfloat16 raw_uint16_to_bfloat16(uint16_t a) { bfloat16 res; res.x = a; return res; } // Comparison operators HOSTDEVICE inline bool operator==(const bfloat16& a, const bfloat16& b) { return static_cast(a) == static_cast(b); } HOSTDEVICE inline bool operator!=(const bfloat16& a, const bfloat16& b) { return static_cast(a) != static_cast(b); } HOSTDEVICE inline bool operator<(const bfloat16& a, const bfloat16& b) { return static_cast(a) < static_cast(b); } HOSTDEVICE inline bool operator<=(const bfloat16& a, const bfloat16& b) { return static_cast(a) <= static_cast(b); } HOSTDEVICE inline bool operator>(const bfloat16& a, const bfloat16& b) { return static_cast(a) > static_cast(b); } HOSTDEVICE inline bool operator>=(const bfloat16& a, const bfloat16& b) { return static_cast(a) >= static_cast(b); } HOSTDEVICE inline bool(isnan)(const bfloat16& a) { return (a.x & 0x7FFF) > 0x7F80; } HOSTDEVICE inline bool(isinf)(const bfloat16& a) { return (a.x & 0x7F80) == 0x7F80; } HOSTDEVICE inline bool(isfinite)(const bfloat16& a) { return !((isnan)(a)) && !((isinf)(a)); } inline std::ostream& operator<<(std::ostream& os, const bfloat16& a) { os << static_cast(a); return os; } } // namespace dtype } // namespace phi namespace std { template <> struct is_pod { static const bool value = is_trivial::value && is_standard_layout::value; }; template <> struct is_floating_point : std::integral_constant< bool, std::is_same< phi::dtype::bfloat16, typename std::remove_cv::type>::value> {}; template <> struct is_signed { static const bool value = true; }; template <> struct is_unsigned { static const bool value = false; }; inline bool isnan(const phi::dtype::bfloat16& a) { return phi::dtype::isnan(a); } inline bool isinf(const phi::dtype::bfloat16& a) { return phi::dtype::isinf(a); } template <> struct numeric_limits { static const bool is_specialized = true; static const bool is_signed = true; static const bool is_integer = false; static const bool is_exact = false; static const bool has_infinity = true; static const bool has_quiet_NaN = true; static const bool has_signaling_NaN = true; static const float_denorm_style has_denorm = denorm_present; static const bool has_denorm_loss = false; static const std::float_round_style round_style = std::round_to_nearest; static const bool is_iec559 = false; static const bool is_bounded = false; static const bool is_modulo = false; static const int digits = 8; static const int digits10 = 2; static const int max_digits10 = 9; static const int radix = 2; static const int min_exponent = -125; static const int min_exponent10 = -37; static const int max_exponent = 128; static const int max_exponent10 = 38; static const bool traps = true; static const bool tinyness_before = false; static phi::dtype::bfloat16(min)() { return phi::dtype::raw_uint16_to_bfloat16(0x007f); } static phi::dtype::bfloat16 lowest() { return phi::dtype::raw_uint16_to_bfloat16(0xff7f); } static phi::dtype::bfloat16(max)() { return phi::dtype::raw_uint16_to_bfloat16(0x7f7f); } static phi::dtype::bfloat16 epsilon() { return phi::dtype::raw_uint16_to_bfloat16(0x3400); } static phi::dtype::bfloat16 round_error() { return phi::dtype::bfloat16(0.5); } static phi::dtype::bfloat16 infinity() { return phi::dtype::raw_uint16_to_bfloat16(0x7f80); } static phi::dtype::bfloat16 quiet_NaN() { return phi::dtype::raw_uint16_to_bfloat16(0xffc1); } static phi::dtype::bfloat16 signaling_NaN() { return phi::dtype::raw_uint16_to_bfloat16(0xff81); } static phi::dtype::bfloat16 denorm_min() { return phi::dtype::raw_uint16_to_bfloat16(0x0001); } }; } // namespace std