set -e function clock_to_seconds() { hours=`echo $1 | awk -F ':' '{print $1}'` mins=`echo $1 | awk -F ':' '{print $2}'` secs=`echo $1 | awk -F ':' '{print $3}'` echo `awk 'BEGIN{printf "%.2f",('$secs' + '$mins' * 60 + '$hours' * 3600)}'` } function infer() { export OPENBLAS_MAIN_FREE=1 topology=$1 layer_num=$2 bs=$3 trainers=`nproc` if [ $trainers -gt $bs ]; then trainers=$bs fi log="logs/infer-${topology}-${layer_num}-${trainers}openblas-${bs}.log" threads=$((`nproc` / trainers)) if [ $threads -eq 0 ]; then threads=1 fi export OPENBLAS_NUM_THREADS=$threads models_in="models/${topology}-${layer_num}/pass-00000/" if [ ! -d $models_in ]; then echo "./run_mkl_infer.sh to save the model first" exit 0 fi log_period=$((32 / bs)) paddle train --job=test \ --config="${topology}.py" \ --use_mkldnn=False \ --use_gpu=False \ --trainer_count=$trainers \ --log_period=$log_period \ --config_args="batch_size=${bs},layer_num=${layer_num},is_infer=True,num_samples=256" \ --init_model_path=$models_in \ 2>&1 | tee ${log} # calculate the last 5 logs period time of 160(=32*5) samples, # the time before are burning time. start=`tail ${log} -n 7 | head -n 1 | awk -F ' ' '{print $2}' | xargs` end=`tail ${log} -n 2 | head -n 1 | awk -F ' ' '{print $2}' | xargs` start_sec=`clock_to_seconds $start` end_sec=`clock_to_seconds $end` fps=`awk 'BEGIN{printf "%.2f",(160 / ('$end_sec' - '$start_sec'))}'` echo "Last 160 samples start: ${start}(${start_sec} sec), end: ${end}(${end_sec} sec;" >> ${log} echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} } if [ ! -f "train.list" ]; then echo " " > train.list fi if [ ! -f "test.list" ]; then echo " " > test.list fi if [ ! -d "logs" ]; then mkdir logs fi # inference benchmark for batchsize in 1 2 4 8 16; do infer vgg 19 $batchsize infer resnet 50 $batchsize infer googlenet v1 $batchsize infer alexnet 2 $batchsize done