# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest from test_softmax_op import stable_softmax class TestSequenceSoftmaxOp(OpTest): def setUp(self): self.op_type = "sequence_softmax" x = np.random.uniform(0.1, 1, (11, 1)).astype("float32") lod = [[0, 4, 5, 8, 11]] out = np.zeros((11, 1)).astype("float32") for i in range(4): sub_x = x[lod[0][i]:lod[0][i + 1], :] sub_x = sub_x.reshape(1, lod[0][i + 1] - lod[0][i]) sub_out = stable_softmax(sub_x) out[lod[0][i]:lod[0][i + 1], :] = sub_out.reshape( lod[0][i + 1] - lod[0][i], 1) self.inputs = {"X": (x, lod)} self.outputs = {"Out": out} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out", max_relative_error=0.01) if __name__ == "__main__": unittest.main()