# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: define random functions # __all__ = ['gaussin', # 'uniform', # 'shuffle', # 'randn', # 'rand', # 'randint'] import numpy as np from ..fluid import core from ..fluid.framework import device_guard, in_dygraph_mode, _varbase_creator, Variable, convert_np_dtype_to_dtype_ from ..fluid.layers.layer_function_generator import templatedoc from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype from ..fluid.layers import utils from ..fluid.layers.tensor import fill_constant __all__ = ['randperm', 'randn', 'randint'] def randint(low, high=None, shape=None, out=None, dtype=None, device=None, stop_gradient=False, name=None): """ This function returns a Tensor filled with random integers from the "discrete uniform" distribution of the specified data type in the interval [low, high). If high is None (the default), then results are from [0, low). Args: low (int): The lower bound on the range of random values to generate, the low is included in the range. (unless high=None, in which case this parameter is one above the highest such integer). high (int, optional): The upper bound on the range of random values to generate, the high is excluded in the range. Default None(see above for behavior if high=None). shape (list|tuple|Variable, optional): The shape of the output Tensor, if the shape is a list or tuple, its elements can be an integer or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be int32 or int64. Default is None, in which case the shape is [1]. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output Tensor which can be int32, int64, if dytpe is `None`, the data type of created Tensor is `int64` device(str, optional): This parameter specifies that the Tensor is created on the GPU or CPU. stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable, default value is False. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: A Tensor of the specified shape filled with random integers. Raises: TypeError: Randint's low must less then high. Examples: .. code-block:: python import paddle import paddle.tensor as tensor # example 1: # attr shape is a list which doesn't contain tensor Variable. result_1 = paddle.randint(low=-5, high=5, shape=[3, 4], dtype="int64") # example 2: # attr shape is a list which contains tensor Variable. dim_1 = fluid.layers.fill_constant([1],"int64",3) dim_2 = fluid.layers.fill_constant([1],"int32",5) result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32") # example 3: # attr shape is a Variable, the data type must be int64 or int32. var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64") result_3 = padddle.randint(low=-5, high=5, shape=var_shape, dtype="int32") var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32") result_4 = paddle.randint(low=-5, high=5, shape=var_shape_int32, dtype="int64") # example 4: # Input only one parameter # low=0, high=10, shape=[1], dtype='int64' result_4 = paddle.randint(10) """ def get_new_shape_tensor(list_shape): new_shape_tensor = [] for dim in list_shape: if isinstance(dim, Variable): dim.stop_gradient = True new_shape_tensor.append(dim) else: assert isinstance(dim, int) or isinstance(dim, long) temp_out = helper.create_variable_for_type_inference('int64') fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out) new_shape_tensor.append(temp_out) return new_shape_tensor def get_attr_shape(list_shape): unk_dim_idx = -1 attrs_shape = [] for dim_idx, dim_size in enumerate(list_shape): if isinstance(dim_size, Variable): attrs_shape.append(-1) else: attrs_shape.append(dim_size) assert dim_size > 0, ( "Each dimension size given in shape must not be negative " "except one unknown dimension.") return attrs_shape if dtype is None: dtype = 'int64' check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint') inputs = dict() attrs = dict() if shape is None: shape = [1] assert len(shape) > 0, ("The size of argument(shape) can't be zero.") helper = LayerHelper("randint", **locals()) if in_dygraph_mode(): attrs['shape'] = shape else: if isinstance(shape, Variable): shape.stop_gradient = True inputs["ShapeTensor"] = shape elif isinstance(shape, (list, tuple)): assert len(shape) > 0, ( "The size of argument(shape) can't be zero.") if utils._contain_var(shape): inputs['ShapeTensorList'] = get_new_shape_tensor(shape) else: attrs["shape"] = get_attr_shape(shape) check_type(shape, 'shape', (list, tuple, Variable), 'randint') if high is None: high = low low = 0 attrs['low'] = low attrs['high'] = high if (low >= high): raise ValueError( "randint's low must less then high, but received low = {0}, " "high = {1}".format(low, high)) if out is None: if name is None: out = helper.create_variable_for_type_inference(dtype=dtype) else: out = helper.create_variable( name=name, dtype=dtype, persistable=False) else: check_dtype(dtype, 'dtype', convert_dtype(out.dtype), 'randint', "(The dtype in randint must be the same with out's dtype.)") attrs['dtype'] = out.dtype out.stop_gradient = stop_gradient if device is None: helper.append_op( type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs) else: with device_guard(device): helper.append_op( type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out def randn(shape, out=None, dtype=None, device=None, stop_gradient=True, name=None): """ This function returns a tensor filled with random numbers from a normal distribution with mean 0 and variance 1 (also called the standard normal distribution). Args: shape(list|tuple): Shape of the generated random tensor. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. If the out is `None`, a new Variable will be returned to store the result. Default is None. dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor, which can be float32, float64. if dtype is `None` , the data type of output tensor is `float32` . Default is None. device(str, optional): Specific the output variable to be saved in cpu or gpu memory. Supported None, 'cpu', 'gpu'. If it is None, the output variable will be automatically assigned devices. Default: None. stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable. Default is True. name(str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default is None. Returns: Random tensor whose data is drawn from a standard normal distribution, dtype: flaot32 or float64 as specified. Return type: Variable Raises: TypeError: If the type of `shape` is not list or tuple. TypeError: If the data type of `dtype` is not float32 or float64. ValueError: If the length of `shape` is not bigger than 0. Examples: .. code-block:: python # declarative mode import paddle import paddle.fluid as fluid data = paddle.randn([2, 4]) place = fluid.CPUPlace() exe = fluid.Executor(place) res, = exe.run(fluid.default_main_program(), feed={}, fetch_list=[data]) print(res) # [[-1.4187592 0.7368311 -0.53748125 -0.0146909 ] # [-0.66294265 -1.3090698 0.1898754 -0.14065823]] .. code-block:: python # imperative mode import paddle import paddle.fluid as fluid import paddle.fluid.dygraph as dg place = fluid.CPUPlace() with dg.guard(place) as g: x = paddle.randn([2, 4]) x_np = x.numpy() print(x_np) # [[ 1.5149173 -0.26234224 -0.592486 1.4523455 ] # [ 0.04581212 -0.85345626 1.1687907 -0.02512913]] """ helper = LayerHelper("randn", **locals()) check_type(shape, 'shape', (list, tuple), 'randn') assert len(shape) > 0, ("The size of argument(shape) can't be zero.") if dtype is None: dtype = 'float32' check_dtype(dtype, 'create data type', ['float32', 'float64'], 'randn') if out is None: out = helper.create_variable_for_type_inference(dtype=dtype) else: check_variable_and_dtype(out, 'out', [dtype], 'randn') out.stop_gradient = stop_gradient dtype = convert_np_dtype_to_dtype_(dtype) seed = np.random.randint(0, 100) with device_guard(device): helper.append_op( type='gaussian_random', outputs={'Out': out}, attrs={ 'shape': shape, 'mean': 0.0, 'std': 1.0, 'seed': seed, 'dtype': dtype, 'use_mkldnn': False }) return out @templatedoc() def randperm(n, out=None, dtype="int64", device=None, stop_gradient=True, seed=0): """ ${comment} Args: n (int): The upper bound (exclusive), and it should be greater than 0. out (Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. If out is None, a new Varibale will be create to store the result. Default: None. dtype (np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: int64, int32. Default: int32. device (str, optional): Specific the output variable to be saved in cpu or gpu memory. Supported None, 'cpu', 'gpu'. If it is None, the output variable will be automatically assigned devices. Default: None. stop_gradient (bool, optional): Whether grad should record operations on the returned tensor. Default: True. seed (int, optional): Random seed used for permute samples. If seed is equal to 0, it means use a seed generated by the system. Note that if seed is not 0, this operator will always generate the same random permutation every time. Default: 0. Returns: ${out_comment}. Return Type: ${out_type} Examples: .. code-block:: python import paddle import paddle.fluid as fluid num = 6 is_use_gpu = False data_1 = paddle.randperm(num) fluid.layers.Print(data_1) data_2 = paddle.randperm(num, dtype="int32", seed=1) fluid.layers.Print(data_2) data_3 = paddle.randperm(num, stop_gradient=False, device="cpu") fluid.layers.Print(data_3) paddle.randperm(num, out=data_3) fluid.layers.Print(data_3) place = fluid.CUDAPlace(0) if is_use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) exe.run() """ if n < 1: raise ValueError("The input n should be greater than 0 in randperm op.") check_dtype(dtype, 'dtype', ['int64', 'int32'], 'randperm') dtype = convert_dtype(dtype) if device not in [None, 'cpu', 'gpu']: raise ValueError("The input device should in [None, 'cpu', 'gpu'].") check_type(stop_gradient, 'stop_gradient', bool, 'randperm') helper = LayerHelper("randperm", **locals()) if out is None: out = helper.create_variable_for_type_inference(dtype=dtype) else: check_variable_and_dtype(out, 'out', [dtype], 'randperm') if stop_gradient: out.stop_gradient = True inputs = dict() outputs = {'Out': [out]} attrs = {'n': n, 'dtype': out.dtype, 'seed': seed} with device_guard(device): helper.append_op( type='randperm', inputs=inputs, outputs=outputs, attrs=attrs) return out