// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "paddle/phi/common/scalar_array.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/device_context.h" #include "paddle/phi/infermeta/nullary.h" namespace phi { // reference: https://gist.github.com/lakshayg/d80172fe5ae3c5d2c2aedb53c250320e template T Erfinv(T x) { if (x < -1 || x > 1) { return std::numeric_limits::quiet_NaN(); } else if (x == 1.0) { return std::numeric_limits::infinity(); } else if (x == -1.0) { return -std::numeric_limits::infinity(); } const T LN2 = 6.931471805599453094172321214581e-1; const T A0 = 1.1975323115670912564578e0; const T A1 = 4.7072688112383978012285e1; const T A2 = 6.9706266534389598238465e2; const T A3 = 4.8548868893843886794648e3; const T A4 = 1.6235862515167575384252e4; const T A5 = 2.3782041382114385731252e4; const T A6 = 1.1819493347062294404278e4; const T A7 = 8.8709406962545514830200e2; const T B0 = 1.0000000000000000000e0; const T B1 = 4.2313330701600911252e1; const T B2 = 6.8718700749205790830e2; const T B3 = 5.3941960214247511077e3; const T B4 = 2.1213794301586595867e4; const T B5 = 3.9307895800092710610e4; const T B6 = 2.8729085735721942674e4; const T B7 = 5.2264952788528545610e3; const T C0 = 1.42343711074968357734e0; const T C1 = 4.63033784615654529590e0; const T C2 = 5.76949722146069140550e0; const T C3 = 3.64784832476320460504e0; const T C4 = 1.27045825245236838258e0; const T C5 = 2.41780725177450611770e-1; const T C6 = 2.27238449892691845833e-2; const T C7 = 7.74545014278341407640e-4; const T D0 = 1.4142135623730950488016887e0; const T D1 = 2.9036514445419946173133295e0; const T D2 = 2.3707661626024532365971225e0; const T D3 = 9.7547832001787427186894837e-1; const T D4 = 2.0945065210512749128288442e-1; const T D5 = 2.1494160384252876777097297e-2; const T D6 = 7.7441459065157709165577218e-4; const T D7 = 1.4859850019840355905497876e-9; const T E0 = 6.65790464350110377720e0; const T E1 = 5.46378491116411436990e0; const T E2 = 1.78482653991729133580e0; const T E3 = 2.96560571828504891230e-1; const T E4 = 2.65321895265761230930e-2; const T E5 = 1.24266094738807843860e-3; const T E6 = 2.71155556874348757815e-5; const T E7 = 2.01033439929228813265e-7; const T F0 = 1.414213562373095048801689e0; const T F1 = 8.482908416595164588112026e-1; const T F2 = 1.936480946950659106176712e-1; const T F3 = 2.103693768272068968719679e-2; const T F4 = 1.112800997078859844711555e-3; const T F5 = 2.611088405080593625138020e-5; const T F6 = 2.010321207683943062279931e-7; const T F7 = 2.891024605872965461538222e-15; T abs_x = abs(x); if (abs_x <= 0.85) { T r = 0.180625 - 0.25 * x * x; T num = (((((((A7 * r + A6) * r + A5) * r + A4) * r + A3) * r + A2) * r + A1) * r + A0); T den = (((((((B7 * r + B6) * r + B5) * r + B4) * r + B3) * r + B2) * r + B1) * r + B0); return x * num / den; } T r = sqrt(LN2 - log(1.0 - abs_x)); T num, den; if (r <= 5.0) { r = r - 1.6; num = (((((((C7 * r + C6) * r + C5) * r + C4) * r + C3) * r + C2) * r + C1) * r + C0); den = (((((((D7 * r + D6) * r + D5) * r + D4) * r + D3) * r + D2) * r + D1) * r + D0); } else { r = r - 5.0; num = (((((((E7 * r + E6) * r + E5) * r + E4) * r + E3) * r + E2) * r + E1) * r + E0); den = (((((((F7 * r + F6) * r + F5) * r + F4) * r + F3) * r + F2) * r + F1) * r + F0); } if (x < 0) { return -num / den; } else { return num / den; } } template struct TruncatedNormal { T mean, std; T a_normal_cdf; T b_normal_cdf; TruncatedNormal(T mean, T std) : mean(mean), std(std) { auto normal_cdf = [](T x) { return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0; }; a_normal_cdf = normal_cdf(-2.0); b_normal_cdf = normal_cdf(2.0); } T operator()(T value) const { auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value; return std::sqrt(2.0) * Erfinv(2 * p - 1) * std + mean; } }; template void TruncatedGaussianRandomKernel(const Context& dev_ctx, const std::vector& shape, float mean, float std, int seed, DataType dtype, DenseTensor* out); } // namespace phi