# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle import paddle.fluid.core as core from paddle.cost_model import CostModel paddle.enable_static() device = "gpu" if core.is_compiled_with_cuda() else "cpu" class TestCostModel(unittest.TestCase): def test_profiler_measure_empty_program(self): cost_model = core.CostModel() empty_program = paddle.static.Program() startup_program = paddle.static.Program() cost_data = cost_model.profile_measure(empty_program, startup_program, device, ["time"]) self.assertEqual(cost_data.get_whole_time_ms(), 0) def test_profiler_measure_program(self): main_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): # TODO(zhhsplendid): support paddle.static.data, which is uninitialized data data = paddle.ones(name='X', shape=[16, 100], dtype='float32') hidden = paddle.static.nn.fc(data, 10) loss = paddle.mean(hidden) cost_model = core.CostModel() cost_data = cost_model.profile_measure(main_program, startup_program, device, ["time"]) fc_op_time = cost_data.get_op_time_ms(0) mean_op_time = cost_data.get_op_time_ms(1) self.assertGreater(fc_op_time, 0) self.assertGreater(mean_op_time, 0) self.assertGreaterEqual(cost_data.get_whole_time_ms(), fc_op_time + mean_op_time) def test_static_op_benchmark_cost_model(self): op_name = "abs" cost_model = CostModel() # init static data cost_model.static_cost_data() op_name = "abs" abs_op_cost = cost_model.get_static_op_time(op_name) abs_op_time = abs_op_cost["op_time"] abs_op_config = abs_op_cost["config"] print("abs_op_time:", abs_op_time) print("abs_op_config:", abs_op_config) self.assertGreater(float(abs_op_time), 0) conv2d_op_cost = cost_model.get_static_op_time("conv2d") conv2d_op_time = conv2d_op_cost["op_time"] conv2d_op_config = conv2d_op_cost["config"] self.assertGreater(float(conv2d_op_time), 0) print("conv2d_op_time:", conv2d_op_time) print("conv2d_op_config:", conv2d_op_config) conv2d_backward_op_cost = cost_model.get_static_op_time( "conv2d", forward=False) conv2d_backward_op_time = conv2d_backward_op_cost["op_time"] conv2d_backward_op_config = conv2d_backward_op_cost["config"] self.assertGreater(float(conv2d_backward_op_time), 0) print("conv2d_backward_op_time:", conv2d_backward_op_time) print("conv2d_backward_op_config:", conv2d_backward_op_config) conv2d_fp16_op_cost = cost_model.get_static_op_time( "conv2d", dtype="float16") conv2d_fp16_op_time = conv2d_fp16_op_cost["op_time"] conv2d_fp16_op_config = conv2d_fp16_op_cost["config"] self.assertGreater(float(conv2d_fp16_op_time), 0) print("conv2d_fp16_op_time:", conv2d_fp16_op_time) print("conv2d_fp16_op_config:", conv2d_fp16_op_config) if __name__ == '__main__': unittest.main()