// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/basic_engine.h" #include #include #include #include #include #include #include #include #include #include "paddle/fluid/imperative/gradient_accumulator.h" #include "paddle/fluid/imperative/layer.h" #include "paddle/fluid/imperative/op_base.h" #include "paddle/fluid/imperative/tracer.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/profiler.h" DECLARE_bool(sort_sum_gradient); namespace paddle { namespace imperative { void BasicEngine::Init( const std::vector>& tensors, const std::vector>& grad_tensors, bool retain_graph) { retain_graph_ = retain_graph; PADDLE_ENFORCE_EQ( tensors.size(), grad_tensors.size(), platform::errors::Unavailable( "The size of tensors do not equal the size of grad_tensors," "the size of tensors is %s, but the size of grad_tensors is %s.", tensors.size(), grad_tensors.size())); PADDLE_ENFORCE_EQ(accumulators_.empty(), true, platform::errors::AlreadyExists( "Accumulators are not empty before preparing it for " "backward network execution.")); PADDLE_ENFORCE_EQ(accumulators_with_grad_node_.empty(), true, platform::errors::AlreadyExists( "Accumulators with grad_node as the key are not empty " "before preparing it for backward network execution.")); for (size_t i = 0; i < tensors.size(); ++i) { auto var = tensors[i]; auto grad_tensor = grad_tensors[i]; auto init_node = var->GradVarBase()->GradNode(); PADDLE_ENFORCE_EQ( var->GradVarBase()->GraphIsFreed(), false, platform::errors::Unavailable( "%s trying to backward through the same graph a second " "time, but this graph have already been freed. Please " "specify Tensor.backward(retain_graph=True) when " "calling backward at the first time.", var->Name())); if (!retain_graph) { VLOG(5) << "Clear the auto-grad graph from grad var " << var->Name() << " because of retain_graph=False when calling backward"; var->GradVarBase()->SetGraphIsFreed(true); } if (init_node == nullptr || var->OverridedStopGradient()) { VLOG(3) << "Skip auto grad since there is no grad op for var or loss is " "stop_gradient=True: " << var->Name(); continue; } VLOG(3) << "Init node of backward"; PADDLE_ENFORCE_EQ( var->HasGradVar(), true, platform::errors::NotFound("Tensor %s has no gradient", var->Name())); auto& fwd_var = var->Var().Get(); auto* grad_var = var->GradVarBase()->MutableVar()->GetMutable(); VLOG(6) << "init loss grad:" << var->GradVarBase()->Name() << " as stop_gradient false"; var->GradVarBase()->InnerSetOverridedStopGradient(false); auto* dev_ctx = platform::DeviceContextPool::Instance().Get(fwd_var.place()); if (grad_tensor == nullptr) { grad_var->Resize(fwd_var.dims()); grad_var->mutable_data(fwd_var.place(), fwd_var.type()); operators::math::set_constant(*dev_ctx, grad_var, 1.0); } else { paddle::framework::TensorCopy( grad_tensor->Var().Get(), fwd_var.place(), *dev_ctx, grad_var); } VariableWrapper* init_grad_var = var->GradVarBase()->SharedVar().get(); auto& accumulator = accumulators_with_grad_node_[init_grad_var->GetGradNode()] [init_grad_var]; if (!accumulator) { if (FLAGS_sort_sum_gradient) { accumulator.reset(new SortedGradientAccumulator(init_grad_var)); } else { accumulator.reset(new EagerGradientAccumulator(init_grad_var)); } } accumulator->IncreaseRefCnt(); accumulator->IncreaseCurCnt(); init_nodes_.push_back(init_node); } } void BasicEngine::CheckBackwardInputs(const OpBase& op) { for (auto& pair : op.GetInsMap()) { if (!pair.second.IsGrad()) { continue; } for (auto& var : pair.second) { if (!var) { continue; } auto* inner_var = var->MutableVar(); framework::Tensor* tensor = nullptr; if (!inner_var->IsInitialized() || inner_var->IsType()) { tensor = inner_var->GetMutable(); } if (tensor && !tensor->IsInitialized()) { auto* dev_ctx = platform::DeviceContextPool::Instance().Get(op.place()); // NOTE(zhiqiu): since grad variable is ungenerated, so the dtype is not // correct. var->DataType() returns the default dtype, which is float32. // Here, we use the type of the corresponding forward datatype. tensor->mutable_data(op.place(), var->ForwardDataType()); VLOG(6) << "Set ungenerated Grad: " << var->Name() << " as zero with dtype " << framework::DataTypeToString(var->ForwardDataType()); operators::math::set_constant(*dev_ctx, tensor, 0.0); } } } } void BasicEngine::PrepareGradAccumulators( const OpBase& op, const std::vector>& grad_pending_nodes) { for (const auto& pair : op.GetOutsMap()) { if (!pair.second.IsGrad()) { continue; } for (const auto& var : pair.second) { if (!var) continue; if (!var->HasGradNode()) { auto& accumulator = accumulators_[var.get()]; if (!accumulator) { if (FLAGS_sort_sum_gradient) { accumulator.reset(new SortedGradientAccumulator(var.get())); } else { accumulator.reset(new EagerGradientAccumulator(var.get())); } } accumulator->IncreaseRefCnt(); VLOG(3) << "Prepare to acccumulate variable grad " << var->Name() << "(" << var.get() << ") that don't have grad node with reference count " << accumulator->RefCnt(); } else { // Because Inplace op overwrites the grad_node of the input grad_var. So // only the information of grad_pending_node can be used to find the // grad_node of grad_var. bool find_grad_node_of_var = false; for (auto& grad_pending_node : grad_pending_nodes) { PADDLE_ENFORCE_NOT_NULL( grad_pending_node, platform::errors::NotFound("Grad pending node is nullptr.")); for (auto& grad_pending_op : *grad_pending_node) { VLOG(6) << "Determine whether var (" << var->Name() << ") is the input var of grad_pending_op (" << grad_pending_op.Type() << ")."; grad_pending_op.EnforceHasInOut(); for (const auto& grad_pending_op_ins_pair : grad_pending_op.GetInsMap()) { if (!grad_pending_op_ins_pair.second.IsGrad()) { continue; } for (const auto& pending_in_var : grad_pending_op_ins_pair.second) { if (var == pending_in_var) { VLOG(6) << "Var (" << var->Name() << ") is the input var of grad_pending_op (" << grad_pending_op.Type() << ")."; find_grad_node_of_var = true; break; } } if (find_grad_node_of_var) { break; } } } if (find_grad_node_of_var) { auto& accumulator = accumulators_with_grad_node_[grad_pending_node][var.get()]; if (!accumulator) { if (FLAGS_sort_sum_gradient) { accumulator.reset(new SortedGradientAccumulator(var.get())); } else { accumulator.reset(new EagerGradientAccumulator(var.get())); } } accumulator->IncreaseRefCnt(); VLOG(3) << "Prepare to acccumulate variable grad " << var->Name() << "(" << var.get() << ") that has grad node with reference count " << accumulator->RefCnt(); break; } } PADDLE_ENFORCE_EQ( find_grad_node_of_var, true, platform::errors::NotFound( "No grad node corresponding to grad Tensor (%s) was found.", var->Name())); } } } } void BasicEngine::PrepareDeps() { PADDLE_ENFORCE_EQ( node_deps_.empty(), true, platform::errors::AlreadyExists("Op deps are not empty before preparing " "it for backward network execution.")); std::queue q; std::unordered_set visited; for (size_t i = 0; i < init_nodes_.size(); ++i) { q.push(init_nodes_[i].get()); visited.insert(init_nodes_[i].get()); } while (!q.empty()) { auto* cur_node = q.front(); q.pop(); const auto& grad_pending_nodes = cur_node->GradPendingNodes(); for (auto& cur_op : *cur_node) { cur_op.EnforceHasInOut(); PrepareGradAccumulators(cur_op, grad_pending_nodes); } for (auto& grad_pending_node : grad_pending_nodes) { PADDLE_ENFORCE_NOT_NULL( grad_pending_node, platform::errors::NotFound("Grad pending node is nullptr.")); ++node_deps_[grad_pending_node.get()]; if (visited.count(grad_pending_node.get()) == 0) { visited.insert(grad_pending_node.get()); q.push(grad_pending_node.get()); } } } } static std::shared_ptr> CallGradientHooks( const NameVarMap& bwd_ins, const std::string& op_type) { std::shared_ptr> tmp_ins_ptr = nullptr; for (const auto& pair : bwd_ins) { for (size_t i = 0; i < pair.second.size(); ++i) { auto& var = pair.second[i]; if (var->HasVariableWrapperHook()) { if (tmp_ins_ptr == nullptr) { tmp_ins_ptr = std::make_shared>(bwd_ins); } VLOG(3) << "Call " << var->GetVariableWrapperHooks().size() << " hooks of " << op_type << "'s input `" << pair.first << "`'s var `" << var->Name() << "`."; auto tmp_var = var; for (const auto& hook_pair : var->GetVariableWrapperHooks()) { tmp_var = (*hook_pair.second)(tmp_var); } (*tmp_ins_ptr)[pair.first][i] = tmp_var; } } } return tmp_ins_ptr; } static bool IsInputCanInplace(const std::shared_ptr& var) { auto* inner_var = var->MutableVar(); if (inner_var->IsInitialized() && inner_var->IsType()) { auto tensor = inner_var->GetMutable(); if (tensor->IsInitialized()) { return true; } } return false; } static void PerformBackwardInplace(const std::string& op_type, const NameVarMap& ins, NameVarMap* outs) { auto& infer_inplace = paddle::framework::OpInfoMap::Instance().Get(op_type).infer_inplace_; if (infer_inplace) { auto in_to_outs = infer_inplace(true); for (auto& pair : in_to_outs) { framework::LoDTensor *in_tensor = nullptr, *out_tensor = nullptr; for (auto& p : ins) { if (p.first == pair.first) { // has at least one var if (p.second.size() > 0 && p.second[0]) { auto& in_var = p.second[0]; VLOG(10) << p.first << " use_count: " << in_var.use_count(); // the refcount of var to be inplaced should be 1 if (in_var.use_count() == 1) { if (IsInputCanInplace(in_var)) { in_tensor = in_var->MutableVar()->GetMutable(); } } } } } if (!in_tensor) { continue; } for (auto& p : *outs) { if (p.first == pair.second) { if (p.second.size() > 0 && p.second[0]) { auto& out_var = p.second[0]; if (out_var->Type() == framework::proto::VarType::LOD_TENSOR) { out_tensor = out_var->MutableVar()->GetMutable(); } } } } if (!out_tensor) { continue; } out_tensor->ShareBufferWith(*in_tensor); out_tensor->Resize(in_tensor->dims()); VLOG(4) << "Inplace performed in op " << op_type << ": " << pair.second << " -> " << pair.first; } } } void BasicEngine::Execute() { if (init_nodes_.empty()) { return; } PrepareDeps(); // Start execute Computation graph std::queue> q; for (size_t i = 0; i < init_nodes_.size(); ++i) { if (node_deps_[init_nodes_[i].get()] == 0) { q.push(std::move(init_nodes_[i])); } } size_t op_num = 0; while (!q.empty()) { auto shared_cur_node = std::move(q.front()); q.pop(); auto& inplace_grad_name_map = shared_cur_node->InplaceGradNameMap(); for (auto& cur_op : *shared_cur_node) { platform::RecordEvent op_type_record_event(cur_op.Type()); ++op_num; // CheckBackWardInput CheckBackwardInputs(cur_op); // Step 1: Run Backward OP auto& bwd_ins = cur_op.GetInsMap(); auto& bwd_outs = cur_op.GetOutsMap(); /** * [ Why need temporary outputs here? ] * * - construct the temp output map, avoid to disrupt graph * - replace the element in the map by temp var, because a * var may be coresponding to several grad var in one op */ NameVarMap tmp_outs(bwd_outs); for (auto& pair : tmp_outs) { if (!pair.second.IsGrad()) { continue; } for (auto& var : pair.second) { if (!var) { continue; } std::unordered_map>::iterator iter; if (!var->HasGradNode()) { VLOG(10) << "Find gradient of var (" << var->Name() << ") with no grad_node."; iter = accumulators_.find(var.get()); PADDLE_ENFORCE_EQ( iter != accumulators_.end(), true, platform::errors::NotFound( "Cannot find gradient of variable %s", var->Name())); } else { bool flag_find_grad = false; VLOG(10) << "Find gradient of var (" << var->Name() << ") with grad_node."; for (auto& grad_pending_node : shared_cur_node->GradPendingNodes()) { const auto& iter_grad_node = accumulators_with_grad_node_.find(grad_pending_node); if (iter_grad_node != accumulators_with_grad_node_.end()) { iter = iter_grad_node->second.find(var.get()); if (iter != iter_grad_node->second.end()) { flag_find_grad = true; break; } } } PADDLE_ENFORCE_EQ( flag_find_grad, true, platform::errors::NotFound( "Cannot find gradient of variable %s", var->Name())); } // leaf_accumulators_ : hooks and accumulate-grad for leaf tensor, // it should be orderly and not reapeated. if (var->IsLeafGrad()) { if (std::find(leaf_accumulators_.begin(), leaf_accumulators_.end(), iter->second.get()) == leaf_accumulators_.end()) { leaf_accumulators_.push_back(iter->second.get()); } if (iter->second->HasInnerVar()) { var = iter->second->InnerVar(); } } if (var->OverridedStopGradient() || iter->second->RefCnt() > 1) { auto tmp_var = std::make_shared(var->Name()); tmp_var->SetType(var->Type()); tmp_var->SetForwardDataType(var->ForwardDataType()); var = tmp_var; need_accu_var_list_.emplace_back(iter->second.get(), var); VLOG(10) << "create temporary var of " << var->Name() << " for sum gradient within this graph!"; } else if (!inplace_grad_name_map.empty() && inplace_grad_name_map.count(pair.first) && bwd_ins.count(inplace_grad_name_map.at(pair.first))) { // When calculate Inplace grad op, create a new output var. // If a tmp var has been created, there is no need to create it // again. for (auto& in_var : bwd_ins.at(inplace_grad_name_map.at(pair.first))) { if (in_var == var) { auto tmp_var = std::make_shared(var->Name()); tmp_var->SetType(var->Type()); tmp_var->SetForwardDataType(var->ForwardDataType()); inplace_output_grad_var_list_.emplace_back(var, tmp_var); var = tmp_var; VLOG(10) << "Inplace grad op does not use the Inplace " "strategy, a temporary output var (" << var->Name() << ") will be created."; break; } } } } } VLOG(4) << "Check whether there is any inplace operation affecting " "gradient calculation."; for (auto& pair : bwd_ins) { for (auto& var_wrapper : pair.second) { auto wrapper_version_snapshot = var_wrapper->InplaceVersionSnapshot(); auto tensor_version = var_wrapper->MutableVar()->CurrentInplaceVersion(); PADDLE_ENFORCE_EQ( tensor_version, wrapper_version_snapshot, platform::errors::PermissionDenied( "Tensor '%s' used in gradient computation in grad op '%s' " "has been " "modified by an inplace operation. " "Its version is %s but the expected version is %s. " "Please fix your code to void calling an inplace operator " "after using the Tensor which will used in gradient " "computation.", var_wrapper->Name(), cur_op.Type(), tensor_version, wrapper_version_snapshot)); VLOG(6) << " The version of Tensor '" << var_wrapper->Name() << "' is [ " << wrapper_version_snapshot << " ]"; } } /** * [ Why need temporary inputs here? ] * * - Hook execution should not change original input tensor. * User can register hook for Tensor's gradient, It is expected * that the hook only affects the gradient of the backward * propagation, and does not affect the gradient value input * as the hook. * - use `tmp_ins_ptr`, only copy bwd_ins when the var in bwd_ins * hold hooks */ auto tmp_ins_ptr = CallGradientHooks(bwd_ins, cur_op.Type()); if (!tmp_ins_ptr) { PerformBackwardInplace(cur_op.Type(), bwd_ins, &tmp_outs); } { VLOG(3) << "Start to execute grad op " << cur_op.Type(); try { if (tmp_ins_ptr == nullptr) { OpBase::Run(cur_op.InnerOp(), bwd_ins, tmp_outs, cur_op.Attrs(), cur_op.DefaultAttrsMap(), cur_op.place()); } else { OpBase::Run(cur_op.InnerOp(), *tmp_ins_ptr, tmp_outs, cur_op.Attrs(), cur_op.DefaultAttrsMap(), cur_op.place()); } } catch (platform::EnforceNotMet& exception) { Clear(); throw std::move(exception); } catch (std::exception& ex) { Clear(); PADDLE_THROW(platform::errors::External("%s", ex.what())); } } for (auto& pair : inplace_output_grad_var_list_) { *pair.first = std::move(*pair.second); } // Step 2: Sum Gradient of This graph for (auto& pair : need_accu_var_list_) { pair.first->SumGrad(std::move(pair.second), cur_op.id()); } // Step 3: Call Hooks && Sum Gradient with Pre-Graph && Call BackwardHooks for (auto* accumulator : leaf_accumulators_) { if (!accumulator->SumGradCompleted()) { continue; } // 1. Call Hooks for `inner_var_` accumulator->CallGradientHooks(); // 2. Sum Gradient `inner_var_` to `var_` of Current or Previous Graph accumulator->AccumulateGrad(); // 3. Call backward Hooks for `var_` accumulator->CallReduceHooks(); } need_accu_var_list_.clear(); inplace_output_grad_var_list_.clear(); leaf_accumulators_.clear(); if (!retain_graph_) { VLOG(3) << "Remove op after op " << cur_op.Type() << " runs"; cur_op.ClearBackwardTrace(); } } // Step 3: Collect ready ops for (auto& grad_pending_node : shared_cur_node->GradPendingNodes()) { PADDLE_ENFORCE_NOT_NULL( grad_pending_node, platform::errors::NotFound("Grad pending node is nullptr.")); auto iter = node_deps_.find(grad_pending_node.get()); if (iter == node_deps_.end()) { continue; } if (--(iter->second) == 0) { q.push(grad_pending_node); } } } Clear(); VLOG(1) << "Backward op number: " << op_num; } void BasicEngine::Clear() { init_nodes_.clear(); node_deps_.clear(); accumulators_.clear(); accumulators_with_grad_node_.clear(); need_accu_var_list_.clear(); leaf_accumulators_.clear(); } } // namespace imperative } // namespace paddle