import paddle.v2.fluid.core as core from contextlib import contextmanager import os __all__ = ['CudaProfiler'] NVPROF_CONFIG = [ "gpustarttimestamp", "gpuendtimestamp", "gridsize3d", "threadblocksize", "streamid", "enableonstart 0", "conckerneltrace", ] @contextmanager def cuda_profiler(output_file, output_mode=None, config=None): """The CUDA profiler. This fuctions is used to profile CUDA program by CUDA runtime application programming interface. The profiling result will be written into `output_file` with Key-Value pair format or Comma separated values format. The user can set the output mode by `output_mode` argument and set the counters/options for profiling by `config` argument. The default config is ['gpustarttimestamp', 'gpustarttimestamp', 'gridsize3d', 'threadblocksize', 'streamid', 'enableonstart 0', 'conckerneltrace']. Args: output_file (string) : The output file name, the result will be written into this file. output_mode (string) : The output mode has Key-Value pair format and Comma separated values format. It should be 'kvp' or 'csv'. config (list of string) : The profiler options and counters can refer to "Compute Command Line Profiler User Guide". """ if output_mode is None: output_mode = 'csv' if output_mode not in ['kvp', 'csv']: raise ValueError("The output mode must be 'kvp' or 'csv'.") config = NVPROF_CONFIG if config is None else config config_file = 'nvprof_config_file' with open(config_file, 'wb') as fp: fp.writelines(["%s\n" % item for item in config]) core.nvprof_init(output_file, output_mode, config_file) # Enables profiler collection by the active CUDA profiling tool. core.nvprof_start() yield # Disables profiler collection. core.nvprof_stop() os.remove(config_file) def reset_profiler(): core.reset_profiler() @contextmanager def profiler(state, sorted_key=None): """The profiler interface. Different from cuda_profiler, this fuction can be used to profile both CPU and GPU program. Args: state (string) : The profiler state, It should be 'CPU' or 'GPU'. sorted_key (string) : If None, the profiler results will be printed without sorting. Otherwise, the profiler results will be sorted by the this flag. This flag should be one of 'calls', 'total', 'max', 'min' or 'ave'. The `calls` means sorting by the calling counter. The `total` means sorting by the total execution time. The `max` means sorting by the maximum execution time. The `min` means sorting by the minimum execution time. The `ave` means sorting by the average execution time. """ if state not in ['CPU', 'GPU']: raise ValueError("The state must be 'CPU' or 'GPU'.") prof_state = core.ProfilerState.kCUDA if state == "GPU" else core.ProfilerState.kCPU core.enable_profiler(prof_state) yield if sorted_key not in ['calls', 'total', 'max', 'min', 'ave']: raise ValueError("The state must be in 'calls', 'total', " "'max', 'min', 'ave'") sorted_key = 'default' if sorted_key is None else sorted_key key_map = { 'default': core.EventSortingKey.kDefault, 'calls': core.EventSortingKey.kCalls, 'total': core.EventSortingKey.kTotal, 'max': core.EventSortingKey.kMax, 'min': core.EventSortingKey.kMin, 'ave': core.EventSortingKey.kAve, } with core.ostream_redirect(stdout=True, stderr=True): core.disable_profiler(key_map[sorted_key])