# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from paddle.trainer_config_helpers import * ######################## data source ################################ define_py_data_sources2( train_list='legacy/gserver/tests/Sequence/dummy.list', test_list=None, module='rnn_data_provider', obj='process_unequalength_seq') settings(batch_size=2, learning_rate=0.01) ######################## network configure ################################ dict_dim = 10 word_dim = 8 hidden_dim = 8 label_dim = 2 speaker1 = data_layer(name="word1", size=dict_dim) speaker2 = data_layer(name="word2", size=dict_dim) emb1 = embedding_layer(input=speaker1, size=word_dim) emb2 = embedding_layer(input=speaker2, size=word_dim) # This hierachical RNN is designed to be equivalent to the RNN in # sequence_nest_rnn_multi_unequalength_inputs.conf def step(x1, x2): def calrnn(y): mem = memory(name='rnn_state_' + y.name, size=hidden_dim) out = fc_layer( input=[y, mem], size=hidden_dim, act=TanhActivation(), bias_attr=True, name='rnn_state_' + y.name) return out encoder1 = calrnn(x1) encoder2 = calrnn(x2) return [encoder1, encoder2] encoder1_rep, encoder2_rep = recurrent_group( name="stepout", step=step, input=[emb1, emb2]) encoder1_last = last_seq(input=encoder1_rep) encoder1_expandlast = expand_layer(input=encoder1_last, expand_as=encoder2_rep) context = mixed_layer( input=[ identity_projection(encoder1_expandlast), identity_projection(encoder2_rep) ], size=hidden_dim) rep = last_seq(input=context) prob = fc_layer( size=label_dim, input=rep, act=SoftmaxActivation(), bias_attr=True) outputs( classification_cost( input=prob, label=data_layer( name="label", size=label_dim)))