/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" namespace paddle { namespace operators { namespace { template T NormalizeL1(T* x, size_t len) { T sum = 0.; for (size_t i = 0; i < len; ++i) sum += x[i]; // (This comment is from the old LinearChainCRFLayer.) // Right now, we just bet that sum won't be zero. If this really happens, we // will figure out what should be done then. PADDLE_ENFORCE(sum, "The unnormalized probabilities of all possible unfinished " "sequences must be greater than 0."); T s = 1. / sum; for (size_t i = 0; i < len; ++i) x[i] *= s; return sum; } } // namespace using framework::LoDTensor; using framework::LoD; using framework::Tensor; template using EigenMatrix = framework::EigenMatrix; template class LinearChainCRFOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* emission_weights = ctx.Input("Emission"); auto* transition_weights = ctx.Input("Transition"); auto* emission_exps = ctx.Output("EmissionExps"); emission_exps->mutable_data(ctx.GetPlace()); auto* transition_exps = ctx.Output("TransitionExps"); transition_exps->mutable_data(ctx.GetPlace()); auto* label = ctx.Input("Label"); auto in_lod = emission_weights->lod(); PADDLE_ENFORCE(in_lod.size(), "Input(Emission) is not a sequence."); // TODO(caoying) The checks related to LoD information should be // moved into InferShape once after the InferShape is refactored. PADDLE_ENFORCE_EQ(emission_weights->NumLevels(), 1UL, "The Input(Emission) should be a sequence."); PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL, "The Input(Label) should be a sequence."); const size_t level = 0; auto emission_dims = emission_weights->dims(); const size_t batch_size = emission_dims[0]; const size_t tag_num = emission_dims[1]; const size_t seq_num = in_lod[level].size() - 1; Tensor emission_row_max; emission_row_max.mutable_data( framework::make_ddim({static_cast(batch_size), 1}), ctx.GetPlace()); auto place = ctx.GetEigenDevice(); auto x = EigenMatrix::From(*emission_weights); auto x_row_max = EigenMatrix::From(emission_row_max); x_row_max.device(place) = x.maximum(Eigen::DSizes(1)) .reshape(Eigen::DSizes(int(batch_size), 1)); auto x_exps = EigenMatrix::From(*emission_exps); x_exps.device(place) = (x - x_row_max.broadcast(Eigen::DSizes(1, tag_num))).exp(); auto w = EigenMatrix::From(*transition_weights); auto w_exps = EigenMatrix::From(*transition_exps); w_exps.device(place) = w.exp(); auto* alpha = ctx.Output("Alpha"); alpha->mutable_data(ctx.GetPlace()); auto* ll = ctx.Output("LogLikelihood"); // resize the output tensor to the correct dimension. ll->Resize({static_cast(seq_num), 1}); T* log_likelihood = ll->mutable_data(ctx.GetPlace()); for (size_t i = 0; i < seq_num; ++i) { int start_pos = static_cast(in_lod[level][i]); int end_pos = static_cast(in_lod[level][i + 1]); if (end_pos == start_pos) { // If an empty input sequence is given, pad 0 for its cost. log_likelihood[i] = 0.; continue; } const Tensor one_seq = emission_weights->Slice(start_pos, end_pos); Tensor one_seq_row_max = emission_row_max.Slice(start_pos, end_pos); Tensor one_seq_exps = emission_exps->Slice(start_pos, end_pos); const Tensor one_seq_label = label->Slice(start_pos, end_pos); Tensor one_seq_alpha = alpha->Slice(start_pos, end_pos); log_likelihood[i] = ForwardOneSequence( one_seq, one_seq_row_max, one_seq_exps, *transition_weights, *transition_exps, one_seq_label, &one_seq_alpha); } }; protected: T ForwardOneSequence(const Tensor& emission, const Tensor& emission_row_max, const Tensor& emission_exps, const Tensor& trans_weights, const Tensor& trans_weight_exps, const Tensor& label, Tensor* alpha) const { const T* x = emission.data(); const T* x_row_max = emission_row_max.data(); const T* x_exps = emission_exps.data(); const T* w = trans_weights.data(); const T* w_exps = trans_weight_exps.data(); T* alpha_value = alpha->data(); auto x_dims = emission.dims(); const size_t seq_length = x_dims[0]; const size_t tag_num = x_dims[1]; // The 1st row of w are transition weights for start mask. // The 2nd row of w are transition weights for end mask. // Transition weights between other tags begin from the 3rd row of w. const size_t state_trans_base_idx = 2; for (size_t i = 0; i < tag_num; ++i) { alpha_value[i] = w_exps[i] * x_exps[i]; } T ll = -x_row_max[0] - std::log(NormalizeL1(alpha_value, tag_num)); for (size_t k = 1; k < seq_length; ++k) { for (size_t i = 0; i < tag_num; ++i) { T sum = 0.; for (size_t j = 0; j < tag_num; ++j) { sum += alpha_value[(k - 1) * tag_num + j] * w_exps[(j + state_trans_base_idx) * tag_num + i]; } alpha_value[k * tag_num + i] = x_exps[k * tag_num + i] * sum; } // NormalizeL1 is to avoid underflow or overflow at (*). ll -= x_row_max[k] + std::log(NormalizeL1(alpha_value + k * tag_num, tag_num)); } T sum = 0.; for (size_t i = 0; i < tag_num; ++i) { sum += alpha_value[(seq_length - 1) * tag_num + i] * w_exps[tag_num + i]; } ll -= std::log(sum); // Now ll is equal to -log(Z). const int* lbl = label.data(); PADDLE_ENFORCE_LT( *std::max_element(lbl, lbl + seq_length), tag_num, "An invalid tag label that execesses the largest tag number."); // Calculate the nominator part, which depends on the label sequence. ll += w[lbl[0]] /*start transition*/ + x[lbl[0]] + w[tag_num + lbl[seq_length - 1]] /*end transition*/; for (size_t k = 1; k < seq_length; ++k) { ll += x[k * tag_num + lbl[k]] + w[(lbl[k - 1] + state_trans_base_idx) * tag_num + lbl[k]]; } return -ll; }; }; template class LinearChainCRFGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* label = ctx.Input("Label"); auto* emission_exps = ctx.Input("EmissionExps"); auto* transition_exps = ctx.Input("TransitionExps"); auto* alpha = ctx.Input("Alpha"); const T* ll_grad = ctx.Input(framework::GradVarName("LogLikelihood"))->data(); auto place = ctx.GetPlace(); auto* emission_grad = ctx.Output(framework::GradVarName("Emission")); emission_grad->mutable_data(place); auto* trans_grad = ctx.Output(framework::GradVarName("Transition")); if (trans_grad) { trans_grad->mutable_data(place); } auto emission_dims = emission_exps->dims(); // Beta is the memo table used in dynamic programming to calculate the // backwark vectors. For a backward vector i (the i-th row of beta), it // captures the unnormalized probabilities of partial sequences starting at // position i. Tensor beta; beta.mutable_data(emission_dims, place); const size_t level = 0; // currently, only support sequence. auto lod = label->lod(); PADDLE_ENFORCE(lod.size(), "Input(Label) is not a sequence."); for (size_t i = 0; i < lod[level].size() - 1; ++i) { int start_pos = static_cast(lod[level][i]); int end_pos = static_cast(lod[level][i + 1]); if (end_pos == start_pos) continue; const Tensor one_seq_emission_exps = emission_exps->Slice(start_pos, end_pos); const Tensor one_seq_label = label->Slice(start_pos, end_pos); const Tensor one_seq_alpha = alpha->Slice(start_pos, end_pos); Tensor one_seq_beta = beta.Slice(start_pos, end_pos); Tensor one_seq_emission_grad = emission_grad->Slice(start_pos, end_pos); BackwardOneSequence(ctx.device_context(), ll_grad[i], one_seq_emission_exps, *transition_exps, one_seq_alpha, one_seq_label, &one_seq_beta, trans_grad, &one_seq_emission_grad); } }; protected: void BackwardOneSequence(const platform::DeviceContext& ctx, const T ll_grad, const Tensor& emission_exps, const Tensor& transition_exps, const Tensor& alpha, const Tensor& label, Tensor* beta, Tensor* transition_grad, Tensor* emission_grad) const { const T* w_exps = transition_exps.data(); const T* x_exps = emission_exps.data(); const int* label_value = label.data(); T* beta_value = beta->data(); auto x_dims = emission_exps.dims(); const size_t seq_length = x_dims[0]; const size_t tag_num = x_dims[1]; const size_t state_trans_base_idx = 2; // Calculate the backward vectors: beta. // First, calculate the initialition state. for (size_t i = 0; i < tag_num; ++i) { beta_value[(seq_length - 1) * tag_num + i] = w_exps[tag_num + i]; } NormalizeL1(beta_value + (seq_length - 1) * tag_num, tag_num); for (int k = static_cast(seq_length) - 2; k >= 0; --k) { for (size_t i = 0; i < tag_num; ++i) { T sum = 0.; for (size_t j = 0; j < tag_num; ++j) { sum += w_exps[(i + state_trans_base_idx) * tag_num + j] * x_exps[(k + 1) * tag_num + j] * beta_value[(k + 1) * tag_num + j]; } beta_value[k * tag_num + i] = sum; } // NormalizeL1 is to avoid underflow or overflow at (**). NormalizeL1(beta_value + k * tag_num, tag_num); } auto alpha_mat = EigenMatrix::From(alpha); auto beta_mat = EigenMatrix::From(*beta); auto x_grad_mat = EigenMatrix::From(*emission_grad); auto* place = ctx.GetEigenDevice(); auto prob = alpha_mat * beta_mat; auto row_sum = prob.sum(Eigen::DSizes(1)) .reshape(Eigen::DSizes(seq_length, 1)) .broadcast(Eigen::DSizes(1, tag_num)); x_grad_mat.device(*place) = prob / row_sum; for (size_t k = 0; k < seq_length; ++k) { x_grad_mat(k, label_value[k]) -= static_cast(1.); } if (transition_grad) { T* trans_grad = transition_grad->data(); for (size_t k = 0; k < tag_num; ++k) { trans_grad[k] += x_grad_mat(/*from start state*/ 0, k); trans_grad[tag_num + k] += x_grad_mat(/*to end state*/ seq_length - 1, k); } auto x_exps_mat = EigenMatrix::From(emission_exps); // TODO(caoying): Fix this to avoid using this local variable. Tensor tmp; tmp.mutable_data(beta->dims(), ctx.GetPlace()); auto tmp_mat = EigenMatrix::From(tmp); auto prob = beta_mat * x_exps_mat; auto row_sum = prob.sum(Eigen::DSizes(1)) .reshape(Eigen::DSizes(seq_length, 1)) .broadcast(Eigen::DSizes(1, tag_num)); tmp_mat.device(*place) = prob / row_sum; for (size_t k = 1; k < seq_length; ++k) { T sum = 0.; for (size_t i = 0; i < tag_num; ++i) { for (size_t j = 0; j < tag_num; ++j) { sum += w_exps[(i + state_trans_base_idx) * tag_num + j] * // (**) alpha_mat(k - 1, i) * tmp_mat(k, j); } } sum = 1. / sum; for (size_t i = 0; i < tag_num; ++i) { for (size_t j = 0; j < tag_num; ++j) { trans_grad[(i + state_trans_base_idx) * tag_num + j] += sum * w_exps[(i + state_trans_base_idx) * tag_num + j] * alpha_mat(k - 1, i) * tmp_mat(k, j); } } trans_grad[(label_value[k - 1] + state_trans_base_idx) * tag_num + label_value[k]] -= static_cast(1.); } } }; }; } // namespace operators } // namespace paddle