/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/pten_utils.h" #include "paddle/fluid/operators/elementwise/elementwise_op.h" #include "paddle/fluid/operators/elementwise/elementwise_op_function.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/platform/cpu_info.h" // only can include the headers in paddle/pten/include dirs #include "paddle/pten/api/lib/utils/tensor_utils.h" #include "paddle/pten/include/core.h" #include "paddle/pten/kernels/math_kernel.h" namespace paddle { namespace operators { class ElementwiseMulOp : public ElementwiseOp { public: using Tensor = framework::Tensor; using ElementwiseOp::ElementwiseOp; framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto input_data_type = OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y"); #ifdef PADDLE_WITH_MKLDNN if (this->CanMKLDNNBeUsed(ctx, input_data_type)) { return framework::OpKernelType(input_data_type, ctx.GetPlace(), framework::DataLayout::kMKLDNN, framework::LibraryType::kMKLDNN); } #endif return framework::OpKernelType(input_data_type, ctx.GetPlace()); } framework::OpKernelType GetKernelTypeForVar( const std::string& var_name, const framework::Tensor& tensor, const framework::OpKernelType& expected_kernel_type) const { if (framework::IsComplexType(expected_kernel_type.data_type_)) { // only promote inputs’s types when contains complex input return framework::OpKernelType(tensor.type(), tensor.place(), tensor.layout()); } else { return framework::OpKernelType(expected_kernel_type.data_type_, tensor.place(), tensor.layout()); } } }; template void default_elementwise_mul(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, framework::Tensor* z) { int axis = ctx.Attr("axis"); auto x_dims = x->dims(); auto y_dims = y->dims(); if (x_dims.size() >= y_dims.size()) { ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, MulFunctor(), z); } else { ElementwiseComputeEx, DeviceContext, T>( ctx, x, y, axis, InverseMulFunctor(), z); } } template struct SameDimsElemwiseMul { void operator()(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, framework::Tensor* z); }; template class ElementwiseMulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto x_var = ctx.InputVar("X"); PADDLE_ENFORCE_EQ(x_var != nullptr, true, platform::errors::InvalidArgument( "Cannot get input Variable X, Variable name = %s.", ctx.InputName("X"))); auto* y = ctx.Input("Y"); framework::Tensor x, *z; if (x_var->IsType()) { PADDLE_ENFORCE_EQ(y->dims().size() == 1 && y->dims()[0] == 1, true, platform::errors::InvalidArgument( "For elementwise_op, if X is Sparse, Y must be " "scalar. But reveived the size of Y = %s.", y->dims().size())); auto& x_sele = x_var->Get(); auto out_sele = ctx.Output("Out"); x = x_sele.value(); out_sele->set_rows(x_sele.rows()); out_sele->set_height(x_sele.height()); out_sele->mutable_value()->Resize(x_sele.value().dims()); out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type()); z = ctx.Output("Out")->mutable_value(); z->mutable_data(ctx.GetPlace()); auto dims_equal = x.dims() == y->dims(); if (dims_equal) { SameDimsElemwiseMul same_dims_mul; same_dims_mul(ctx, &x, y, z); } else { default_elementwise_mul(ctx, &x, y, z); } } else if (x_var->IsType()) { auto* x_lod = ctx.Input("X"); auto* z_lod = ctx.Output("Out"); z_lod->mutable_data(ctx.GetPlace()); auto& dev_ctx = ctx.device_context(); int axis = ctx.Attr("axis"); auto pt_x = paddle::experimental::MakePtenDenseTensor(*x_lod); auto pt_y = paddle::experimental::MakePtenDenseTensor(*y); auto pt_z = paddle::experimental::MakePtenDenseTensor(*z_lod); pten::MultiplyKernel(dev_ctx, *pt_x.get(), *pt_y.get(), axis, pt_z.get()); } else { PADDLE_THROW(platform::errors::InvalidArgument( "X's type[%s] is not supported by elementwise_op. X's type should be " "LoDTensor or SelectedRows.", framework::ToTypeName(x_var->Type()))); } } }; template struct MulGradDX { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; } }; template struct MulGradDX> { HOSTDEVICE paddle::platform::complex operator()( paddle::platform::complex x, paddle::platform::complex y, paddle::platform::complex out, paddle::platform::complex dout) const { paddle::platform::complex y_conj(y.real, -y.imag); return dout * y_conj; } }; template struct MulGradDY { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; } }; template struct MulGradDY> { HOSTDEVICE paddle::platform::complex operator()( paddle::platform::complex x, paddle::platform::complex y, paddle::platform::complex out, paddle::platform::complex dout) const { paddle::platform::complex x_conj(x.real, -x.imag); return dout * x_conj; } }; template typename std::enable_if< std::is_same::value>::type ElementwiseMulGrad(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, const framework::Tensor* out, const framework::Tensor* dout, framework::Tensor* dx, framework::Tensor* dy) { int axis = ctx.Attr("axis"); ElemwiseGradCompute, MulGradDY>( ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX(), MulGradDY()); } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) template typename std::enable_if< std::is_same::value>::type ElementwiseMulGrad(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, const framework::Tensor* out, const framework::Tensor* dout, framework::Tensor* dx, framework::Tensor* dy); #endif template class ElementwiseMulGradKernel : public ElemwiseGradKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { ElemwiseGradKernel::Compute(ctx); using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* out = dout; // out is not necessary auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); ElementwiseMulGrad(ctx, x, y, out, dout, dx, dy); } }; template class ElementwiseMulDoubleGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input("DOut"); auto* ddx = ctx.Input("DDX"); auto* ddy = ctx.Input("DDY"); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); auto* ddout = ctx.Output("DDOut"); if (ddout) ddout->mutable_data(ctx.GetPlace()); Tensor ddx_safe, ddy_safe; GetDoubleGradSafeTensor(ctx, x, ddx, &ddx_safe); GetDoubleGradSafeTensor(ctx, y, ddy, &ddy_safe); // dx = dout * ddy // dy = dout * ddx // ddout = ddx * y + x * ddy // change computation sequence to save memory, so ddout can inplace ddx and // dx can be used as 'tmp' tensor // (1) dx = x * ddy // (2) dy = dout * ddx // (3) ddout = ddx * y // (4) ddout = ddout + dx // (5) dx = dout * ddy if (ddout) { int axis = ctx.Attr("axis"); auto& place = *ctx.template device_context().eigen_device(); // size(ddout) > size(ddx), ddout can't use memory of ddx using inplace if (ddout->numel() > ddx->numel()) { ElemwiseGradCompute, MulGradDY>( ctx, ddx_safe, ddy_safe, *dout, *dout, axis, dx, dy, MulGradDX(), MulGradDY()); Tensor ddout_tmp; ddout_tmp.mutable_data(ddout->dims(), ctx.GetPlace()); default_elementwise_mul(ctx, y, &ddx_safe, ddout); default_elementwise_mul(ctx, &ddy_safe, x, &ddout_tmp); auto ddout_t = framework::EigenVector::Flatten(*ddout); auto ddout_tmp_t = framework::EigenVector::Flatten(ddout_tmp); ddout_t.device(place) = ddout_t + ddout_tmp_t; } else { // use dx to save memory, other than alloc tmp tensor Tensor* ddout_tmp = dx; default_elementwise_mul(ctx, x, &ddy_safe, ddout_tmp); // NOTE: in the following ElemwiseGradCompute, for the // first output tensor is nullptr, the branch to calculate first // output tensor will not be activated, DivGradDx function will not // be called and can be ignored, the first branch has little effect // on running speed. ElemwiseGradCompute, MulGradDY>( ctx, ddx_safe, ddy_safe, *dout, *dout, axis, nullptr, dy, MulGradDX(), MulGradDY()); default_elementwise_mul(ctx, &ddx_safe, y, ddout); auto ddout_t = framework::EigenVector::Flatten(*ddout); auto ddout_tmp_t = framework::EigenVector::Flatten(*ddout_tmp); ddout_t.device(place) = ddout_t + ddout_tmp_t; default_elementwise_mul(ctx, dout, &ddy_safe, dx); } } } }; template class ElementwiseMulTripleGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { using Tensor = framework::Tensor; // get input auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input("DOut"); auto* ddx = ctx.Input("DDX"); auto* ddy = ctx.Input("DDY"); auto* d_dx = ctx.Input("D_DX"); auto* d_dy = ctx.Input("D_DY"); auto* d_ddout = ctx.Input("D_DDOut"); // get output auto* out_d_x = ctx.Output("D_X"); auto* out_d_y = ctx.Output("D_Y"); auto* out_d_dout = ctx.Output("D_DOut"); auto* out_d_ddx = ctx.Output("D_DDX"); auto* out_d_ddy = ctx.Output("D_DDY"); if (out_d_x) out_d_x->mutable_data(x->dims(), ctx.GetPlace()); if (out_d_y) out_d_y->mutable_data(y->dims(), ctx.GetPlace()); if (out_d_dout) out_d_dout->mutable_data(dout->dims(), ctx.GetPlace()); if (out_d_ddx) out_d_ddx->mutable_data(x->dims(), ctx.GetPlace()); if (out_d_ddy) out_d_ddy->mutable_data(y->dims(), ctx.GetPlace()); auto& place = *ctx.template device_context().eigen_device(); Tensor ddx_safe, ddy_safe; GetDoubleGradSafeTensor(ctx, x, ddx, &ddx_safe); GetDoubleGradSafeTensor(ctx, y, ddy, &ddy_safe); if (d_ddout) { if (out_d_x) { // out_d_x = ddy * d_ddout default_elementwise_mul(ctx, &ddy_safe, d_ddout, out_d_x); } if (out_d_y) { // out_d_y = ddx * d_ddout default_elementwise_mul(ctx, &ddx_safe, d_ddout, out_d_y); } } if (out_d_dout) { // get out_d_dout // out_d_dout = ddy * d_dx + d_dy * ddx Tensor out_d_dout_tmp; out_d_dout_tmp.mutable_data(dout->dims(), ctx.GetPlace()); default_elementwise_mul(ctx, d_dy, &ddx_safe, out_d_dout); default_elementwise_mul(ctx, &ddy_safe, d_dx, &out_d_dout_tmp); auto out_d_dout_t = framework::EigenVector::Flatten(*out_d_dout); auto out_d_dout_tmp_t = framework::EigenVector::Flatten(out_d_dout_tmp); out_d_dout_t.device(place) = out_d_dout_t + out_d_dout_tmp_t; } if (out_d_ddx) { // get out_d_ddx // out_d_ddx = dout * d_dy + y * d_ddout Tensor out_d_ddx_tmp; out_d_ddx_tmp.mutable_data(ddx->dims(), ctx.GetPlace()); default_elementwise_mul(ctx, dout, d_dy, out_d_ddx); default_elementwise_mul(ctx, y, d_ddout, &out_d_ddx_tmp); auto out_d_ddx_t = framework::EigenVector::Flatten(*out_d_ddx); auto out_d_ddx_tmp_t = framework::EigenVector::Flatten(out_d_ddx_tmp); out_d_ddx_t.device(place) = out_d_ddx_t + out_d_ddx_tmp_t; } if (out_d_ddy) { // get out_d_ddy // out_d_ddy = dout * d_dx + x * d_ddout Tensor out_d_ddy_tmp; out_d_ddy_tmp.mutable_data(ddy->dims(), ctx.GetPlace()); default_elementwise_mul(ctx, dout, d_dx, out_d_ddy); default_elementwise_mul(ctx, x, d_ddout, &out_d_ddy_tmp); auto out_d_ddy_t = framework::EigenVector::Flatten(*out_d_ddy); auto out_d_ddy_tmp_t = framework::EigenVector::Flatten(out_d_ddy_tmp); out_d_ddy_t.device(place) = out_d_ddy_t + out_d_ddy_tmp_t; } } }; } // namespace operators } // namespace paddle