/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/executor.h" #include #include #include #include #include #include "paddle/framework/lod_tensor.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/scope.h" #include namespace paddle { namespace framework { Executor::Executor(const std::vector& places) { device_contexts_.resize(places.size()); for (size_t i = 0; i < places.size(); i++) { if (platform::is_cpu_place(places[i])) { device_contexts_[i] = new platform::CPUDeviceContext( boost::get(places[i])); } else if (platform::is_gpu_place(places[i])) { #ifdef PADDLE_WITH_CUDA device_contexts_[i] = new platform::CUDADeviceContext( boost::get(places[i])); #else PADDLE_THROW("'GPUPlace' is not supported in CPU only device."); #endif } } } Executor::~Executor() { for (auto& device_context : device_contexts_) { if (device_context) { delete device_context; } } } void Executor::Run(const ProgramDesc& pdesc, Scope* scope) { // TODO(tonyyang-svail): // - only runs the first block // - only runs on the first device // - test on gpu auto& block = pdesc.blocks(0); auto& device = device_contexts_[0]; // TODO(tonyyang-svail): // - runs on a new local scope // Scope& local_scope = scope->NewScope(); for (auto& var : block.vars()) { scope->NewVar(var.name()); } std::vector should_run = Preprocess(pdesc); PADDLE_ENFORCE(should_run.size() == block.ops_size()); for (size_t i = 0; i < should_run.size(); ++i) { if (should_run[i]) { auto op = paddle::framework::OpRegistry::CreateOp(block.ops(i)); op->Run(*scope, *device); } } // // print tensor value // for (auto& var : block.vars()) { // std::cout << var.name() << std::endl; // auto v = scope->FindVar(var.name()); // const LoDTensor& t = v->Get(); // for (int i = 0; i < t.numel(); ++i) { // std::cout << t.data()[i] << " "; // } // std::cout << std::endl; // } } std::vector Executor::Preprocess(const ProgramDesc& pdesc) { // TODO(tonyyang-svail): // - only runs the first block auto& block = pdesc.blocks(0); auto& ops = block.ops(); bool expect_feed = true; for (auto& op_desc : ops) { PADDLE_ENFORCE(op_desc.type() != "feed" || expect_feed, "All FeedOps are at the beginning of the ProgramDesc"); expect_feed = (op_desc.type() == "feed"); } bool expect_fetch = true; for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) { auto& op_desc = *op_iter; PADDLE_ENFORCE(op_desc.type() != "fetch" || expect_fetch, "All FetchOps must at the end of the ProgramDesc"); expect_fetch = (op_desc.type() == "fetch"); } std::set dependent_vars; std::vector should_run; for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) { auto& op_desc = *op_iter; bool found_dependent_vars = false; for (auto& var : op_desc.outputs()) { for (auto& argu : var.arguments()) { if (dependent_vars.count(argu) != 0) { found_dependent_vars = true; } } } // TODO(tonyyang-svail): add VLOG here for debugging if (op_desc.type() == "fetch" || found_dependent_vars) { // erase its output to the dependency graph for (auto& var : op_desc.outputs()) { for (auto& argu : var.arguments()) { dependent_vars.erase(argu); } } // insert its input to the dependency graph for (auto& var : op_desc.inputs()) { for (auto& argu : var.arguments()) { dependent_vars.insert(argu); } } // this op should be executed should_run.push_back(true); LOG(INFO) << "Yes " << op_desc.type(); } else { // this op should NOT be executed should_run.push_back(false); LOG(INFO) << "No " << op_desc.type(); } } // since we are traversing the ProgramDesc in reverse order // we reverse the should_run vector std::reverse(should_run.begin(), should_run.end()); return should_run; } } // namespace framework } // namespace paddle