/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once // See Note [ Why still include the fluid headers? ] #include "paddle/phi/common/int_array.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/core/meta_tensor.h" namespace phi { class MetaConfig; // Common InferMeta Functions for unary operators, The format like: // // void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor* // out) {} // // NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good. // Because functions in this file not only can infer shape, but also need // infer lod or other useful data. // // The InferMeta Functions in this file are arranged in alphabetic order. void AffineGridInferMeta(const MetaTensor& input, const IntArray& outputShape, bool align_corners, MetaTensor* output); void ArgMinMaxInferMeta(const MetaTensor& x, int64_t axis, bool keepdims, bool flatten, int dtype, MetaTensor* out, MetaConfig config = MetaConfig()); void ArgsortInferMeta(const MetaTensor& input, int axis, bool descending, MetaTensor* output, MetaTensor* indices); void AsRealInferMeta(const MetaTensor& input, MetaTensor* output); void AsComplexInferMeta(const MetaTensor& input, MetaTensor* output); void BatchSizeLikeInferMeta(const MetaTensor& x, const std::vector& shape, int x_batch_size_dim, int out_batch_size_dim, MetaTensor* out); void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out); void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out); void ClassCenterSampleInferMeta(const MetaTensor& label, int num_classes, int num_samples, int ring_id, int rank, int nranks, bool fix_seed, int seed, MetaTensor* remapped_label, MetaTensor* sampled_local_class_center); void ClipByNormInferMeta(const MetaTensor& x, float max_norm, MetaTensor* out); void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out); void CropTensorInferMeta(const MetaTensor& x, const IntArray& shape, const IntArray& offsets, MetaTensor* out, MetaConfig config = MetaConfig()); void CumInferMeta(const MetaTensor& x, int axis, bool flatten, bool exclusive, bool reverse, MetaTensor* out); void DecodeJpegInferMeta(const MetaTensor& x, const std::string& mode, MetaTensor* out); void DiagEmbedInferMeta( const MetaTensor& x, int offset, int dim1, int dim2, MetaTensor* out); void DiagInferMeta(const MetaTensor& x, int offset, float padding_value, MetaTensor* out); void DiagonalInferMeta( const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out); void DirichletInferMeta(const MetaTensor& alpha, MetaTensor* out); void EigInferMeta(const MetaTensor& x, MetaTensor* out_w, MetaTensor* out_v); void EighInferMeta(const MetaTensor& x, const std::string& uplo, MetaTensor* out_w, MetaTensor* out_v); void EigvalsInferMeta(const MetaTensor& x, MetaTensor* out, MetaConfig config = MetaConfig()); void EigvalshInferMeta(const MetaTensor& x, const std::string& uplo, bool is_test, MetaTensor* out_w, MetaTensor* out_v); void EinsumInferMeta(const std::vector& inputs, const std::string& equation, MetaTensor* out); void EinsumRawInferMeta(const std::vector& inputs, const std::string& equation, MetaTensor* out, std::vector inner_cache, std::vector xshape); void ExpandInferMeta(const MetaTensor& x, const IntArray& shape, MetaTensor* out); void FillDiagonalInferMeta( const MetaTensor& x, float value, int offset, bool wrap, MetaTensor* out); void FFTC2CInferMeta(const MetaTensor& x, const std::vector& axes, const std::string& normalization, bool forward, MetaTensor* out, MetaConfig = MetaConfig()); void FFTC2RInferMeta(const MetaTensor& x, const std::vector& axes, const std::string& normalization, bool forward, int64_t last_dim_size, MetaTensor* out, MetaConfig = MetaConfig()); void FFTR2CInferMeta(const MetaTensor& x, const std::vector& axes, const std::string& normalization, bool forward, bool onesided, MetaTensor* out, MetaConfig = MetaConfig()); void FlattenInferMeta(const MetaTensor& x, int start_axis, int stop_axis, MetaTensor* out); void FlattenWithXShapeInferMeta(const MetaTensor& x, int start_axis, int stop_axis, MetaTensor* out, MetaTensor* xshape); void FlipInferMeta(const MetaTensor& x, const std::vector& axis, MetaTensor* out); void FrameInferMeta(const MetaTensor& x, int frame_length, int hop_length, int axis, MetaTensor* out, MetaConfig = MetaConfig()); void FullBatchSizeLikeInferMeta(const MetaTensor& x, const std::vector& shape, const Scalar& val, DataType dtype, int x_batch_size_dim, int out_batch_size_dim, MetaTensor* out); void GumbelSoftmaxInferMeta(const MetaTensor& x, float temperature, bool hard, int axis, MetaTensor* out); void HistogramInferMeta( const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out); void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out); void InferMetaFromVecValue(const MetaTensor& x, const std::vector& shape, MetaTensor* out); void InverseInferMeta(const MetaTensor& x, MetaTensor* out); void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out); void IsfiniteInferMeta(const MetaTensor& input, MetaTensor* out); void KthvalueInferMeta(const MetaTensor& x, int k, int axis, bool keepdim, MetaTensor* out, MetaTensor* indices, MetaConfig = MetaConfig()); void LogsumexpInferMeta(const MetaTensor& input, const std::vector& axis, bool keepdim, bool reduce_all, MetaTensor* out); void LUInferMeta(const MetaTensor& x, bool pivot, MetaTensor* out, MetaTensor* pivots, MetaTensor* infos); void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out); void MatrixRankInferMeta(const MetaTensor& x, bool use_default_tol, bool hermitian, MetaTensor* out); void MaxOutInferMeta(const MetaTensor& x, int groups, int axis, MetaTensor* out); void MaxPoolWithIndexInferMeta(const MetaTensor& x, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool global_pooling, bool adaptive, MetaTensor* out, MetaTensor* mask, MetaConfig config = MetaConfig()); void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out); void ModeInferMeta(const MetaTensor& x, int axis, bool keepdim, MetaTensor* out, MetaTensor* indices); void MultinomialInferMeta(const MetaTensor& x, int num_samples, bool replacement, MetaTensor* out); void NanmedianInferMeta(const MetaTensor& x, const IntArray& axes, bool keep_dim, MetaTensor* out, MetaTensor* median_index); void NMSInferMeta(const MetaTensor& x, float threshold, MetaTensor* out); void NormInferMeta(const MetaTensor& x, int axis, float epsilon, bool is_test, MetaTensor* out, MetaTensor* norm); void OverlapAddInferMeta(const MetaTensor& x, int hop_length, int axis, MetaTensor* out, MetaConfig config = MetaConfig()); void PadInferMeta(const MetaTensor& input, const std::vector& paddings, float pad_value, MetaTensor* out, MetaConfig config = MetaConfig()); void Pad3dInferMeta(const MetaTensor& x, const IntArray& paddings, const std::string& mode, float value, const std::string& data_format, MetaTensor* out, MetaConfig config = MetaConfig()); void PixelShuffleInferMeta(const MetaTensor& x, int upscale_factor, const std::string& data_format, MetaTensor* out); void PixelShuffleGradInferMeta(const MetaTensor& out_grad, int upscale_factor, const std::string& data_format, MetaTensor* x_grad); void PixelUnshuffleInferMeta(const MetaTensor& x, int downscale_factor, const std::string& data_format, MetaTensor* out); void PNormInferMeta(const MetaTensor& x, float porder, int axis, float epsilon, bool keepdim, bool asvector, MetaTensor* out); void PoolInferMeta(const MetaTensor& x, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool ceil_mode, bool exclusive, const std::string& data_format, const std::string& pooling_type, bool global_pooling, bool adaptive, const std::string& padding_algorithm, MetaTensor* out, MetaConfig config = MetaConfig()); void QrInferMeta(const MetaTensor& x, const std::string& mode, MetaTensor* q, MetaTensor* r); void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out); void ReduceInferMeta(const MetaTensor& x, const std::vector& axis, bool keep_dim, MetaTensor* out); void ReduceInferMetaBase(const MetaTensor& x, const std::vector& axis, bool keep_dim, bool reduce_all, MetaTensor* out); void RepeatInterleaveInferMeta(const MetaTensor& x, int repeats, int dim, MetaTensor* out); void ReshapeInferMeta(const MetaTensor& x, const IntArray& shape, MetaTensor* out, MetaConfig config = MetaConfig()); void ReshapeWithXShapeInferMeta(const MetaTensor& x, const IntArray& shape, MetaTensor* out, MetaTensor* xshape, MetaConfig config = MetaConfig()); void ReverseInferMeta(const MetaTensor& x, const std::vector& axis, MetaTensor* out); void ReverseArrayInferMeta(const std::vector& x, const std::vector& axis, std::vector out); void RollInferMeta(const MetaTensor& x, const IntArray& shifts, const std::vector& axis, MetaTensor* out); void RReluInferMeta(const MetaTensor& x, float lower, float upper, bool is_test, MetaTensor* out, MetaTensor* noise); void RReluGradInferMeta(const MetaTensor& out_grad, const MetaTensor& noise, MetaTensor* x_grad); void SetValueInferMeta(const MetaTensor& x, MetaTensor* out); void ShapeInferMeta(const MetaTensor& input, MetaTensor* out); void ShardIndexInferMeta(const MetaTensor& in, int index_num, int nshards, int shard_id, int ignore_value, MetaTensor* out, MetaConfig config = MetaConfig()); void SizeInferMeta(const MetaTensor& input, MetaTensor* out); void SliceRawInferMeta(const MetaTensor& input, const std::vector& axes, const IntArray& starts, const IntArray& ends, const std::vector& infer_flags, const std::vector& decrease_axis, MetaTensor* out, MetaConfig config = MetaConfig()); void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out); void SplitInferMeta(const MetaTensor& x_meta, const IntArray& num_or_sections, const Scalar& axis, std::vector out, MetaConfig config = MetaConfig()); void SquaredL2NormInferMeta(const MetaTensor& x, MetaTensor* out); void SqueezeInferMeta(const MetaTensor& x, const IntArray& axes, MetaTensor* out, MetaConfig config = MetaConfig()); void SqueezeWithXShapeInferMeta(const MetaTensor& x, const IntArray& axes, MetaTensor* out, MetaTensor* xshape, MetaConfig config = MetaConfig()); void StridedSliceRawInferMeta(const MetaTensor& x, const std::vector& axes, const IntArray& starts, const IntArray& ends, const IntArray& strides, const std::vector& infer_flags, const std::vector& decrease_axis, MetaTensor* out, MetaConfig config = MetaConfig()); void StridedSliceInferMeta(const MetaTensor& x, const std::vector& axes, const IntArray& starts, const IntArray& ends, const IntArray& strides, MetaTensor* out, MetaConfig config = MetaConfig()); void SumInferMeta(const MetaTensor& x, const std::vector& axis, DataType dtype, bool keep_dim, MetaTensor* out); void SumRawInferMeta(const MetaTensor& x, const std::vector& axis, bool keep_dim, bool reduce_all, DataType dtype, MetaTensor* out); void SvdInferMeta(const MetaTensor& x, bool full_matrices, MetaTensor* u, MetaTensor* s, MetaTensor* vh); void TemporalShiftInferMeta(const MetaTensor& x, int seg_num, float shift_ratio, const std::string& data_format, MetaTensor* out, MetaConfig config = MetaConfig()); void TileInferMeta(const MetaTensor& x, const IntArray& repeat_times, MetaTensor* out, MetaConfig config = MetaConfig()); void TopKInferMeta(const MetaTensor& x, const Scalar& k_scalar, int axis, bool largest, bool sorted, MetaTensor* out, MetaTensor* indices, MetaConfig config = MetaConfig()); void TraceInferMeta( const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out); void TransferLayoutInferMeta(const MetaTensor& x, DataLayout layout, MetaTensor* out); void TransposeInferMeta(const MetaTensor& x, const std::vector& axis, MetaTensor* out); void TransposeGradInferMeta(const MetaTensor& x, const std::vector& axis, MetaTensor* out); void TrilTriuInferMeta(const MetaTensor& x, int diagonal, bool lower, MetaTensor* out); void UnbindInferMeta(const MetaTensor& x, int axis, std::vector outs); void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out); // meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1] void UnchangedInferMetaCheckAxis(const MetaTensor& x, int axis, MetaTensor* out); void UnfoldInferMeta(const MetaTensor& x, const std::vector& kernel_sizes, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, MetaTensor* out, MetaConfig config = MetaConfig()); void UniformRandomInplaceInferMeta(const MetaTensor& x, float min, float max, int seed, int diag_num, int diag_step, float diag_val, MetaTensor* out); void UniqueConsecutiveInferMeta(const MetaTensor& x, bool return_inverse, bool return_counts, const std::vector& axis, int dtype, MetaTensor* out, MetaTensor* index, MetaTensor* counts); void UniqueInferMeta(const MetaTensor& x, bool return_index, bool return_inverse, bool return_counts, const std::vector& axis, DataType dtype, MetaTensor* out, MetaTensor* indices, MetaTensor* index, MetaTensor* counts); void UniqueRawInferMeta(const MetaTensor& x, bool return_index, bool return_inverse, bool return_counts, const std::vector& axis, DataType dtype, bool is_sorted, MetaTensor* out, MetaTensor* indices, MetaTensor* index, MetaTensor* counts); void UnsqueezeInferMeta(const MetaTensor& x, const IntArray& axes, MetaTensor* out, MetaConfig config = MetaConfig()); void UnsqueezeWithXShapeInferMeta(const MetaTensor& x, const IntArray& axes, MetaTensor* out, MetaTensor* xshape, MetaConfig config = MetaConfig()); void UnStackInferMeta(const MetaTensor& x, int axis, int num, std::vector outs); void OneHotRawInferMeta(const MetaTensor& x, const Scalar& depth, DataType dtype, bool allow_out_of_range, MetaTensor* out); void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out); void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out); void ChannelShuffleInferMeta(const MetaTensor& x, int groups, const std::string& data_format, MetaTensor* out); void IdentityLossInferMeta(const MetaTensor& x, int reduction, MetaTensor* out); void FoldInferMeta(const MetaTensor& x, const std::vector& output_sizes, const std::vector& kernel_sizes, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, MetaTensor* out); } // namespace phi