// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include "paddle/fluid/framework/inlined_vector.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/place.h" #include "paddle/pten/core/allocator.h" DECLARE_string(allocator_strategy); namespace paddle { namespace memory { namespace allocation { // Exception when `Alloc`/`AllocShared` failed struct BadAlloc : public std::exception { inline explicit BadAlloc(std::string err_msg, const char* file, int line) : err_str_(platform::GetTraceBackString(std::move(err_msg), file, line)) { } const char* what() const noexcept override { return err_str_.c_str(); } std::string err_str_; }; class Allocator; // Allocation is the object holding the actually pointer. Use // `Allocation::ptr()` will returns the pointer that allocated. // // NOTE: this is the base class of Allocation. Each allocator can use its own // allocation object. // NOTE: the `Allocation::ptr()` could be nullptr, if the allocation size is 0 /** * Allocation is returned by Allocator::Allocate() method. * * An allocator may be decorated by another allocator. For example, we can * decorate a RetryAllocator to any allocator to perform allocation retry when * first allocation request fails. * * Explanations of Allocator design are as follows: * * Suppose we have an allocator which is decorated by several allocators: * * A(1) <- A(2) <- A(3) <- ... <- A(n) * * , and the public allocator is A(1). * * The allocation process would be: * * A(n).Allocate() -> ... -> A(2).Allocate() -> A(1).Allocate() * * , and the free process would be: * * A(1).Free() -> A(2).Free() -> ... -> A(n).Free() * * Therefore, we should record the allocator chain when allocating, so * that we can free the allocation in the reverse order of allocator chain. * The field `decorated_allocators_` is used to record this chain. * * Another example is that we want to add additional fields in Allocation, * e.g., something what is done in AlignedAllocator, etc. * In this case, we should declare a derived class of Allocation, which * contains an underlying Allocation allocated by the underlying allocator. * Therefore, `decorated_allocators_` of the new Allocation object * would * be a new chain, differing from the underlying Allocation object. */ class Allocation : public pten::Allocation { public: Allocation(void* ptr, size_t size, platform::Place place) : pten::Allocation(ptr, size, place), base_ptr_(ptr) {} Allocation(void* ptr, void* base_ptr, size_t size, const platform::Place& place) : pten::Allocation(ptr, size, place), base_ptr_(base_ptr) {} void* base_ptr() const { return base_ptr_; } private: inline void RegisterDecoratedAllocator(Allocator* allocator) { decorated_allocators_.emplace_back(allocator); } inline void PopDecoratedAllocator() { decorated_allocators_.pop_back(); } inline Allocator* TopDecoratedAllocator() { return decorated_allocators_.back(); } private: void* base_ptr_; // the point that directly requested from system /** * NOTE(zjl): Since decorated_allocators_ is usually a small vector. * We reserve a small buffer to it to prevent frequent heap allocation * * Instead, we can use a std::vector here, and reserve * kReserveAllocatorNum in constructor of Allocation. * But using std::vector would make ocr recognition model * fail in CE. The train duration is 8% slower than KPI. */ static constexpr size_t kReserveAllocatorNum = 8; using DecoratedAllocatorStack = framework::InlinedVector; DecoratedAllocatorStack decorated_allocators_; friend class Allocator; }; using AllocationPtr = pten::Allocator::AllocationPtr; using DecoratedAllocationPtr = std::unique_ptr; // Base interface class of memory Allocator. class Allocator : public pten::Allocator { public: static void AllocationDeleter(pten::Allocation* allocation) { Allocator* allocator = static_cast(allocation)->TopDecoratedAllocator(); allocator->Free(allocation); } // Allocate an allocation. // size may be 0, but it would be too complex if we handle size == 0 // in each Allocator. So we handle size == 0 inside AllocatorFacade // in our design. AllocationPtr Allocate(size_t size) override { auto ptr = AllocateImpl(size); static_cast(ptr)->RegisterDecoratedAllocator(this); return AllocationPtr(ptr, AllocationDeleter); } void Free(pten::Allocation* allocation) { static_cast(allocation)->PopDecoratedAllocator(); FreeImpl(allocation); } uint64_t Release(const platform::Place& place) { return ReleaseImpl(place); } protected: virtual pten::Allocation* AllocateImpl(size_t size) = 0; virtual void FreeImpl(pten::Allocation* allocation); virtual uint64_t ReleaseImpl(const platform::Place& place) { return 0; } }; inline size_t AlignedSize(size_t size, size_t alignment) { auto remaining = size % alignment; return remaining == 0 ? size : size + alignment - remaining; } inline size_t AlignedPtrOffset(const void* ptr, size_t alignment) { auto ptr_addr = reinterpret_cast(ptr); auto diff = ptr_addr % alignment; return diff == 0 ? 0 : alignment - diff; } template decltype(auto) static_unique_ptr_cast(std::unique_ptr&& p) { static_assert(std::is_base_of::value, "Derived type must derive from Base."); auto d = static_cast(p.release()); return std::unique_ptr(d, p.get_deleter()); } } // namespace allocation } // namespace memory } // namespace paddle