/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/platform/mkldnn_helper.h" namespace paddle { namespace operators { using framework::DataLayout; using framework::Tensor; using mkldnn::memory; using mkldnn::primitive; using mkldnn::stream; using platform::GetMKLDNNFormat; using platform::MKLDNNDeviceContext; using platform::to_void_cast; namespace { std::string gethash(const mkldnn::memory::dims &operand_dims, const mkldnn::algorithm algorithm) { auto dim2str = [](const mkldnn::memory::dims &operand_dims) { std::string dstr = ""; for (size_t i = 0; i < operand_dims.size(); ++i) { dstr += std::to_string(operand_dims[i]) + "-"; } return dstr; }; return dim2str(operand_dims) + std::to_string(algorithm); } } // namespace template class MKLDNNActivationKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const auto *x = ctx.Input("X"); PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN && x->format() != memory::format::format_undef, "Wrong layout/format set for Input x tensor"); Functor functor; functor(ctx); } }; template class MKLDNNActivationGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const auto *diff_y = ctx.Input(framework::GradVarName("Out")); PADDLE_ENFORCE(diff_y->layout() == DataLayout::kMKLDNN && diff_y->format() != memory::format::format_undef, "Wrong layout/format set for Input OutGrad tensor"); PADDLE_ENFORCE( !ctx.Attr("is_test"), "is_test attribute should be set to False in training phase."); Functor functor; functor(ctx); } }; template void eltwise_forward(const framework::ExecutionContext &ctx, mkldnn::algorithm algorithm, const T alpha = 0, const T beta = 0) { PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), "It must use CPUPlace."); auto &dev_ctx = ctx.template device_context(); const auto &mkldnn_engine = dev_ctx.GetEngine(); const auto *x = ctx.Input("X"); auto *y = ctx.Output("Out"); const T *x_data = x->data(); T *y_data = y->mutable_data(ctx.GetPlace()); PADDLE_ENFORCE( x->dims().size() == 2 || x->dims().size() == 3 || x->dims().size() == 4, "Input dim must be with 2, 3 or 4"); std::vector src_tz = framework::vectorize2int(x->dims()); auto src_format = x->format(); const std::string key = gethash(src_tz, algorithm); const std::string key_src_data = key + ctx.op().Output("Out") + "@eltwise_fwd_src_data"; const std::string key_src_layout = key + ctx.op().Output("Out") + "@eltwise_fwd_src_layout"; const std::string key_with_layout = key + std::to_string(src_format); const std::string key_src_mem = key_with_layout + "@eltwise_fwd_src_mem"; const std::string key_dst_mem = key_with_layout + "@eltwise_fwd_dst_mem"; const std::string key_fwd = key_with_layout + "@eltwise_fwd"; const std::string key_fwd_pd = key_with_layout + "@eltwise_fwd_pd"; bool is_test = ctx.Attr("is_test"); // save input data and layout to be referred in backward path auto p_src_data = std::make_shared(x_data); auto p_src_layout = std::make_shared(src_format); if (!is_test) { dev_ctx.SetBlob(key_src_data, p_src_data); dev_ctx.SetBlob(key_src_layout, p_src_layout); } auto p_fwd = std::static_pointer_cast( dev_ctx.GetBlob(key_fwd)); std::shared_ptr dst_memory; if (p_fwd == nullptr) { // create mkldnn memory for input X auto src_memory = std::shared_ptr( new memory(x->get_mkldnn_prim_desc(), to_void_cast(x_data))); // save src_memory to be referred in backward path dev_ctx.SetBlob(key_src_mem, src_memory); // create primitive descriptor for activation forward and save it auto mkldnn_forward_prop_kind = is_test ? mkldnn::prop_kind::forward_inference : mkldnn::prop_kind::forward_training; auto forward_desc = mkldnn::eltwise_forward::desc( mkldnn_forward_prop_kind, algorithm, src_memory->get_primitive_desc().desc(), alpha, beta); auto forward_pd = std::make_shared( forward_desc, mkldnn_engine); // save prim desc into global device context to be referred in backward path if (!is_test) dev_ctx.SetBlob(key_fwd_pd, forward_pd); // create mkldnn memory for output y dst_memory = std::make_shared(forward_pd->dst_primitive_desc(), y_data); dev_ctx.SetBlob(key_dst_mem, dst_memory); // create activation primitive p_fwd = std::make_shared(*forward_pd, *src_memory, *dst_memory); dev_ctx.SetBlob(key_fwd, p_fwd); } else { // primitives already exist auto src_memory = std::static_pointer_cast(dev_ctx.GetBlob(key_src_mem)); PADDLE_ENFORCE(src_memory != nullptr, "Fail to find eltwise src_memory in device context."); dst_memory = std::static_pointer_cast(dev_ctx.GetBlob(key_dst_mem)); PADDLE_ENFORCE(dst_memory != nullptr, "Fail to find eltwise dst_memory in device context."); src_memory->set_data_handle(platform::to_void_cast(x_data)); dst_memory->set_data_handle(y_data); } // push primitive to stream and wait until it's executed std::vector pipeline; pipeline.push_back(*p_fwd); stream(stream::kind::eager).submit(pipeline).wait(); y->set_mkldnn_prim_desc(dst_memory->get_primitive_desc()); } template void eltwise_grad(const framework::ExecutionContext &ctx, mkldnn::algorithm algorithm, const T alpha = 0, const T beta = 0) { auto &dev_ctx = ctx.template device_context(); const auto &mkldnn_engine = dev_ctx.GetEngine(); const auto *diff_y = ctx.Input(framework::GradVarName("Out")); auto *diff_x = ctx.Output(framework::GradVarName("X")); const T *diff_y_data = diff_y->data(); T *diff_x_data = diff_x->mutable_data(ctx.GetPlace()); std::vector diff_dst_tz = framework::vectorize2int(diff_y->dims()); const std::string key = gethash(diff_dst_tz, algorithm); const std::string key_src_data = key + ctx.op().Input("Out") + "@eltwise_fwd_src_data"; const std::string key_src_layout = key + ctx.op().Input("Out") + "@eltwise_fwd_src_layout"; const auto p_src_layout = std::static_pointer_cast(dev_ctx.GetBlob(key_src_layout)); const std::string key_src_mem = key + std::to_string(*p_src_layout) + "@eltwise_fwd_src_mem"; const std::string key_fwd_pd = key + std::to_string(*p_src_layout) + "@eltwise_fwd_pd"; const std::string key_with_layouts = key + std::to_string(*p_src_layout) + "-" + std::to_string(diff_y->format()); const std::string key_diff_src_mem = key_with_layouts + "@eltwise_diff_src_mem"; const std::string key_diff_dst_mem = key_with_layouts + "@eltwise_diff_dst_mem"; const std::string key_grad = key_with_layouts + "@eltwise_grad"; const auto p_src_data = std::static_pointer_cast(dev_ctx.GetBlob(key_src_data)); auto src_memory = std::static_pointer_cast(dev_ctx.GetBlob(key_src_mem)); PADDLE_ENFORCE(src_memory != nullptr, "Fail to find src_memory in device context"); src_memory->set_data_handle(*p_src_data); std::shared_ptr diff_src_memory; auto p_grad = std::static_pointer_cast( dev_ctx.GetBlob(key_grad)); if (p_grad == nullptr) { // create mkldnn memory for input diff_y auto diff_dst_memory = std::shared_ptr( new memory(diff_y->get_mkldnn_prim_desc(), to_void_cast(diff_y_data))); dev_ctx.SetBlob(key_diff_dst_mem, diff_dst_memory); // retrieve eltwise primitive desc from device context auto forward_pd = std::static_pointer_cast( dev_ctx.GetBlob(key_fwd_pd)); PADDLE_ENFORCE(forward_pd != nullptr, "Fail to find eltwise_fwd_pd in device context"); // ceate primitive descriptor for activation backward auto backward_desc = mkldnn::eltwise_backward::desc( algorithm, diff_dst_memory->get_primitive_desc().desc(), src_memory->get_primitive_desc().desc(), alpha, beta); auto backward_pd = mkldnn::eltwise_backward::primitive_desc( backward_desc, mkldnn_engine, *forward_pd); // create mkldnn memory for output diff_src diff_src_memory = std::make_shared( backward_pd.diff_src_primitive_desc(), diff_x_data); dev_ctx.SetBlob(key_diff_src_mem, diff_src_memory); // create activation backward primitive p_grad = std::make_shared( backward_pd, *src_memory, *diff_dst_memory, *diff_src_memory); dev_ctx.SetBlob(key_grad, p_grad); } else { // primitives already exist diff_src_memory = std::static_pointer_cast( dev_ctx.GetBlob(key_diff_src_mem)); auto diff_dst_memory = std::static_pointer_cast( dev_ctx.GetBlob(key_diff_dst_mem)); diff_src_memory->set_data_handle( platform::to_void_reinterpret_cast(diff_x_data)); diff_dst_memory->set_data_handle( platform::to_void_reinterpret_cast(diff_y_data)); } // push primitive to stream and wait until it's executed std::vector pipeline; pipeline.push_back(*p_grad); stream(stream::kind::eager).submit(pipeline).wait(); diff_x->set_mkldnn_prim_desc(diff_src_memory->get_primitive_desc()); } template struct MKLDNNActivationFunc : public BaseActivationFunctor { void operator()(const framework::ExecutionContext &ctx) const { eltwise_forward(ctx, algorithm); } }; template struct MKLDNNActivationGradFunc : public BaseActivationFunctor { void operator()(const framework::ExecutionContext &ctx) const { eltwise_grad(ctx, algorithm); } }; template using ReluMKLDNNFunctor = MKLDNNActivationFunc; template using TanhMKLDNNFunctor = MKLDNNActivationFunc; template using SqrtMKLDNNFunctor = MKLDNNActivationFunc; template using AbsMKLDNNFunctor = MKLDNNActivationFunc; template using ReluMKLDNNGradFunctor = MKLDNNActivationGradFunc; template using TanhMKLDNNGradFunctor = MKLDNNActivationGradFunc; template using SqrtMKLDNNGradFunctor = MKLDNNActivationGradFunc; template using AbsMKLDNNGradFunctor = MKLDNNActivationGradFunc; } // namespace operators } // namespace paddle namespace ops = paddle::operators; #define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \ REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace, \ ops::MKLDNNActivationKernel>); \ REGISTER_OP_KERNEL( \ act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace, \ ops::MKLDNNActivationGradKernel>); #define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro) \ __macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \ __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor); \ __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor); \ __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor); FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);