# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * mode = get_config_arg("mode", str, "generator") assert mode in set(["generator", "discriminator", "generator_training", "discriminator_training"]) is_generator_training = mode == "generator_training" is_discriminator_training = mode == "discriminator_training" is_generator = mode == "generator" is_discriminator = mode == "discriminator" # The network structure below follows the ref https://arxiv.org/abs/1406.2661 # Here we used two hidden layers and batch_norm print('mode=%s' % mode) # the dim of the noise (z) as the input of the generator network noise_dim = 10 # the dim of the hidden layer hidden_dim = 10 # the dim of the generated sample sample_dim = 2 settings( batch_size=128, learning_rate=1e-4, learning_method=AdamOptimizer(beta1=0.5) ) def discriminator(sample): """ discriminator ouputs the probablity of a sample is from generator or real data. The output has two dimenstional: dimension 0 is the probablity of the sample is from generator and dimension 1 is the probabblity of the sample is from real data. """ param_attr = ParamAttr(is_static=is_generator_training) bias_attr = ParamAttr(is_static=is_generator_training, initial_mean=1.0, initial_std=0) hidden = fc_layer(input=sample, name="dis_hidden", size=hidden_dim, bias_attr=bias_attr, param_attr=param_attr, act=ReluActivation()) hidden2 = fc_layer(input=hidden, name="dis_hidden2", size=hidden_dim, bias_attr=bias_attr, param_attr=param_attr, act=LinearActivation()) hidden_bn = batch_norm_layer(hidden2, act=ReluActivation(), name="dis_hidden_bn", bias_attr=bias_attr, param_attr=ParamAttr(is_static=is_generator_training, initial_mean=1.0, initial_std=0.02), use_global_stats=False) return fc_layer(input=hidden_bn, name="dis_prob", size=2, bias_attr=bias_attr, param_attr=param_attr, act=SoftmaxActivation()) def generator(noise): """ generator generates a sample given noise """ param_attr = ParamAttr(is_static=is_discriminator_training) bias_attr = ParamAttr(is_static=is_discriminator_training, initial_mean=1.0, initial_std=0) hidden = fc_layer(input=noise, name="gen_layer_hidden", size=hidden_dim, bias_attr=bias_attr, param_attr=param_attr, act=ReluActivation()) hidden2 = fc_layer(input=hidden, name="gen_hidden2", size=hidden_dim, bias_attr=bias_attr, param_attr=param_attr, act=LinearActivation()) hidden_bn = batch_norm_layer(hidden2, act=ReluActivation(), name="gen_layer_hidden_bn", bias_attr=bias_attr, param_attr=ParamAttr(is_static=is_discriminator_training, initial_mean=1.0, initial_std=0.02), use_global_stats=False) return fc_layer(input=hidden_bn, name="gen_layer1", size=sample_dim, bias_attr=bias_attr, param_attr=param_attr, act=LinearActivation()) if is_generator_training: noise = data_layer(name="noise", size=noise_dim) sample = generator(noise) if is_discriminator_training: sample = data_layer(name="sample", size=sample_dim) if is_generator_training or is_discriminator_training: label = data_layer(name="label", size=1) prob = discriminator(sample) cost = cross_entropy(input=prob, label=label) classification_error_evaluator(input=prob, label=label, name=mode+'_error') outputs(cost) if is_generator: noise = data_layer(name="noise", size=noise_dim) outputs(generator(noise))