/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/operators/elementwise/elementwise_op.h" namespace paddle { namespace operators { template class ElementwiseMinKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* z = ctx.Output("Out"); z->mutable_data(ctx.GetPlace()); int axis = ctx.Attr("axis"); ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, MinFunctor(), z); } }; template class ElementwiseFMinKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* z = ctx.Output("Out"); z->mutable_data(ctx.GetPlace()); int axis = ctx.Attr("axis"); ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, FMinFunctor(), z); } }; template struct MinGradDx { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * (x < y); } }; template struct MinGradDy { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * (x >= y); } }; #ifdef PADDLE_CUDA_FP16 template <> struct MinGradDx { HOSTDEVICE platform::float16 operator()(platform::float16 x, platform::float16 y, platform::float16 out, platform::float16 dout) const { return x < y ? dout : static_cast(0); } }; template <> struct MinGradDy { HOSTDEVICE platform::float16 operator()(platform::float16 x, platform::float16 y, platform::float16 out, platform::float16 dout) const { return x >= y ? dout : static_cast(0); } }; #endif template typename std::enable_if< std::is_same::value>::type ElementwiseMinGrad(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, const framework::Tensor* out, const framework::Tensor* dout, framework::Tensor* dx, framework::Tensor* dy) { int axis = ctx.Attr("axis"); ElemwiseGradCompute, MinGradDy>( ctx, *x, *y, *out, *dout, axis, dx, dy, MinGradDx(), MinGradDy()); } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) template typename std::enable_if< std::is_same::value>::type ElementwiseMinGrad(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, const framework::Tensor* out, const framework::Tensor* dout, framework::Tensor* dx, framework::Tensor* dy); #endif template class ElementwiseMinGradKernel : public ElemwiseGradKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { ElemwiseGradKernel::Compute(ctx); using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); auto* out = dout; // Fake out, not used ElementwiseMinGrad(ctx, x, y, out, dout, dx, dy); } }; template struct FMinGradDx { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * static_cast((x <= y) || isnan(y)); } }; template <> struct FMinGradDx { HOSTDEVICE paddle::platform::float16 operator()( paddle::platform::float16 x, paddle::platform::float16 y, paddle::platform::float16 out, paddle::platform::float16 dout) const { return dout * static_cast( (x <= y) || paddle::platform::isnan(y)); } }; template <> struct FMinGradDx { HOSTDEVICE int operator()(int x, int y, int out, int dout) const { return dout * static_cast((x <= y)); } }; template <> struct FMinGradDx { HOSTDEVICE int64_t operator()(int64_t x, int64_t y, int64_t out, int64_t dout) const { return dout * static_cast((x <= y)); } }; template struct FMinGradDy { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * static_cast(!((x <= y) || isnan(y))); } }; template <> struct FMinGradDy { HOSTDEVICE paddle::platform::float16 operator()( paddle::platform::float16 x, paddle::platform::float16 y, paddle::platform::float16 out, paddle::platform::float16 dout) const { return dout * static_cast( !((x <= y) || paddle::platform::isnan(y))); } }; template <> struct FMinGradDy { HOSTDEVICE int operator()(int x, int y, int out, int dout) const { return dout * static_cast(!((x <= y))); } }; template <> struct FMinGradDy { HOSTDEVICE int64_t operator()(int64_t x, int64_t y, int64_t out, int64_t dout) const { return dout * static_cast(!((x <= y))); } }; template class ElementwiseFMinGradKernel : public ElemwiseGradKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { ElemwiseGradKernel::Compute(ctx); using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); auto* out = dout; // Fake out, not used int axis = ctx.Attr("axis"); ElemwiseGradCompute, FMinGradDy>( ctx, *x, *y, *out, *dout, axis, dx, dy, FMinGradDx(), FMinGradDy()); } }; } // namespace operators } // namespace paddle