/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef __NVCC__ #include "cub/cub.cuh" #endif #ifdef __HIPCC__ #include namespace cub = hipcub; #endif #include "paddle/fluid/operators/group_norm_op.h" #include "paddle/fluid/platform/device/gpu/gpu_device_function.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" namespace paddle { namespace operators { using DataLayout = framework::DataLayout; enum GroupNormKernelFlags { kHasScale = 1, kHasBias = 2 }; #define ALIGN_BYTES 16 #define CHECK_CASE(i, flags, kernel_name, ...) \ if (i == flags) { \ kernel_name<<>>(__VA_ARGS__); \ } // 0 for no scale, no bias // 1 for has scale, no bias // 2 for no scale, has bias // 3 for has scale, has bias #define UNROLL_ALL_CASES(flags, kernel_name, ...) \ CHECK_CASE(0, flags, kernel_name, __VA_ARGS__) \ CHECK_CASE(1, flags, kernel_name, __VA_ARGS__) \ CHECK_CASE(2, flags, kernel_name, __VA_ARGS__) \ CHECK_CASE(3, flags, kernel_name, __VA_ARGS__) template __device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) { typedef cub::WarpReduce WarpReduce; typename WarpReduce::TempStorage temp_storage; value = WarpReduce(temp_storage).Sum(value); if (cub::LaneId() == 0) platform::CudaAtomicAdd(sum, value); } template __global__ void GroupNormForwardGetMeanAndVar(const T* x, int N, int C, int W, int imsize, int groups, int group_size, T* mean, T* var) { int gid = blockIdx.y; int cid = blockIdx.x; int bid = blockIdx.z; int H = imsize / W; int number = min(group_size, static_cast(C - gid * group_size)); int ccid = gid * group_size + cid; if (ccid >= C) return; T x_mean = 0, x_var = 0; for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) { T val; int hid = imid / W; int wid = imid % W; val = x[(bid * H + hid) * W * C + wid * C + ccid]; x_mean += val; x_var += val * val; } x_mean /= number * imsize; x_var /= number * imsize; CudaAtomicAddWithWarp(&mean[bid * groups + gid], x_mean); CudaAtomicAddWithWarp(&var[bid * groups + gid], x_var); } template __device__ __forceinline__ void ThreadReduce(phi::Array arrs, int size, const int offset, AccT* out_mean, AccT* out_var) { const T* x = arrs[0]; const T* y; if (Num == 2) { y = arrs[1]; } using VecT = kps::details::VectorType; int tid = threadIdx.x; if (offset > 0) { x -= offset; if (Num == 2) { y -= offset; } size += offset; if (tid >= offset) { if (Num == 1) { *out_mean += x[tid]; *out_var += x[tid] * x[tid]; } else if (Num == 2) { *out_mean += y[tid]; *out_var += y[tid] * x[tid]; } } size -= blockDim.x; x += blockDim.x; if (Num == 2) { y += blockDim.x; } } int remain = size % (VecSize * blockDim.x); T ins_x[VecSize]; T ins_y[VecSize]; VecT* ins_vec_x = reinterpret_cast(&ins_x); VecT* ins_vec_y = reinterpret_cast(&ins_y); // vector part for (; VecSize * tid < (size - remain); tid += blockDim.x) { *ins_vec_x = reinterpret_cast(x)[tid]; if (Num == 2) { *ins_vec_y = reinterpret_cast(y)[tid]; } #pragma unroll for (int i = 0; i < VecSize; ++i) { if (Num == 1) { *out_mean += ins_x[i]; *out_var += ins_x[i] * ins_x[i]; } else if (Num == 2) { *out_mean += ins_y[i]; *out_var += ins_y[i] * ins_x[i]; } } } // scalar part tid = size - remain + threadIdx.x; for (; tid < size; tid += blockDim.x) { if (Num == 1) { *out_mean += x[tid]; *out_var += x[tid] * x[tid]; } else if (Num == 2) { *out_mean += y[tid]; *out_var += y[tid] * x[tid]; } } } template __device__ __forceinline__ void ReduceMeanAndVar(T* mean, T* var, T x_mean, T x_var, int size) { const int nc = blockIdx.x; x_mean = kps::details::BlockXReduce>( x_mean, kps::AddFunctor()); x_var = kps::details::BlockXReduce>( x_var, kps::AddFunctor()); __syncthreads(); if (threadIdx.x == 0) { mean[nc] = static_cast(x_mean / size); var[nc] = static_cast(x_var / size); } } template __global__ void ScalarGetMeanAndVarNCHW(const T* x, T* mean, T* var, int size) { int i = blockIdx.x; T x_mean = 0, x_var = 0; for (int j = threadIdx.x; j < size; j += blockDim.x) { T val; val = x[i * size + j]; x_mean += val; x_var += val * val; } ReduceMeanAndVar(mean, var, x_mean, x_var, size); } template __global__ void VectorizedGetMeanAndVarNCHW(const T* x, T* mean, T* var, int size) { int i = blockIdx.x; AccT x_mean = static_cast(0); AccT x_var = static_cast(0); x += i * size; const int input_offset = ((uint64_t)x) % ALIGN_BYTES / sizeof(T); phi::Array ins; ins[0] = x; ThreadReduce(ins, size, input_offset, &x_mean, &x_var); ReduceMeanAndVar(mean, var, x_mean, x_var, size); } template __global__ void GroupNormForward(const T* x, const T* mean, const T* var, const T* scale, const T* bias, int N, int C, int W, int imsize, int groups, int group_size, T epsilon, T* y, T* real_var, const DataLayout data_layout) { int gid = blockIdx.y; int cid = blockIdx.x; int bid = blockIdx.z; int H = imsize / W; int ccid = gid * group_size + cid; if (ccid >= C) return; auto ng = bid * groups + gid; T x_mean = mean[ng]; T x_var = var[ng]; x_var = x_var - x_mean * x_mean; T var_inv = rsqrt(x_var + epsilon); if (cid == 0 && threadIdx.x == 0) { real_var[ng] = x_var; } for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) { T val; int hid, wid; int index = (bid * C + ccid) * imsize + imid; if (data_layout == DataLayout::kNCHW) { val = x[index]; } else { hid = imid / W; wid = imid % W; val = x[(bid * H + hid) * W * C + wid * C + ccid]; } val = (val - x_mean) * var_inv; if (flags & kHasScale) { val *= scale[ccid]; } if (flags & kHasBias) { val += bias[ccid]; } if (data_layout == DataLayout::kNCHW) { y[index] = val; } else { y[(bid * H + hid) * W * C + wid * C + ccid] = val; } } } template class GroupNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const std::string data_layout_str = ctx.Attr("data_layout"); const DataLayout data_layout = framework::StringToDataLayout(data_layout_str); const float epsilon = ctx.Attr("epsilon"); auto* scale = ctx.Input("Scale"); auto* bias = ctx.Input("Bias"); auto* x = ctx.Input("X"); auto* y = ctx.Output("Y"); auto* mean = ctx.Output("Mean"); auto* var = ctx.Output("Variance"); const auto groups = ctx.Attr("groups"); const auto x_dims = x->dims(); const int C = (data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); const int group_size = C / groups; const int W = (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1] : x_dims[x_dims.size() - 2]); y->mutable_data(ctx.GetPlace()); mean->mutable_data(ctx.GetPlace()); var->mutable_data(ctx.GetPlace()); phi::funcs::SetConstant set_zero; auto& dev_ctx = ctx.template device_context(); Tensor temp_var; temp_var.mutable_data(var->dims(), ctx.GetPlace()); auto* x_data = x->data(); auto* y_data = y->data(); auto* mean_data = mean->data(); auto* var_data = var->data(); auto* temp_var_data = temp_var.data(); const T* scale_data = nullptr; if (scale) scale_data = scale->data(); const T* bias_data = nullptr; if (bias) bias_data = bias->data(); int imsize = 1; if (data_layout == DataLayout::kNCHW) { for (int i = 2; i < x_dims.size(); ++i) { imsize *= x_dims[i]; } } else { for (int i = 1; i < x_dims.size() - 1; ++i) { imsize *= x_dims[i]; } } #ifdef __HIPCC__ int block_size = std::max(std::min(256, imsize), 64); #else int block_size = std::min(1024, imsize); #endif dim3 grid(group_size, groups, x_dims[0]); dim3 threads(block_size, 1, 1); if (data_layout == DataLayout::kNCHW) { using AccT = typename details::MPTypeTrait::Type; constexpr int vec_size = sizeof(float4) / sizeof(T); int size = group_size * imsize; const int max_num_threads = 1024; int max_block_size = std::min(size / vec_size, max_num_threads); int block_size_nchw = 1; while (block_size_nchw < max_block_size) { block_size_nchw *= 2; } block_size_nchw = std::max(block_size_nchw, kps::details::kWarpSize); dim3 grids(x_dims[0] * groups); dim3 blocks(block_size_nchw); if (size < vec_size * block_size_nchw) { ScalarGetMeanAndVarNCHW<<>>( x_data, mean_data, temp_var_data, size); } else { VectorizedGetMeanAndVarNCHW< T, AccT, vec_size><<>>( x_data, mean_data, temp_var_data, size); } } else { set_zero(dev_ctx, mean, static_cast(0)); set_zero(dev_ctx, &temp_var, static_cast(0)); GroupNormForwardGetMeanAndVar<<>>( x_data, x_dims[0], C, W, imsize, groups, group_size, mean_data, temp_var_data); } int flags = (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias; UNROLL_ALL_CASES(flags, GroupNormForward, x_data, mean_data, temp_var_data, scale_data, bias_data, x_dims[0], C, W, imsize, groups, group_size, epsilon, y_data, var_data, data_layout); } }; template __global__ void GroupNormBackwardGetMeanAndVar(const T* x, const T* scale, const T* bias, const T* d_y, int N, int C, int W, int imsize, int groups, int group_size, T epsilon, T* d_mean, T* d_var, T* d_scale, T* d_bias) { int gid = blockIdx.y; int cid = blockIdx.x; int bid = blockIdx.z; int H = imsize / W; int number = min(group_size, static_cast(C - gid * group_size)); int ccid = gid * group_size + cid; if (ccid >= C) return; T x_scale = (flags & kHasScale) ? scale[ccid] : 1; T x_bias = (flags & kHasBias) ? bias[ccid] : 0; T x_scale_inv = 0; if (x_scale != 0) x_scale_inv = 1.0 / x_scale; T d_mean_data = 0, d_var_data = 0, d_scale_data = 0, d_bias_data = 0; for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) { T val, dval; int hid = imid / W; int wid = imid % W; val = x[(bid * H + hid) * W * C + wid * C + ccid] - x_bias; dval = d_y[(bid * H + hid) * W * C + wid * C + ccid]; d_var_data += val * dval; d_mean_data += dval * x_scale; val = val * x_scale_inv; d_bias_data += dval; d_scale_data += val * dval; } CudaAtomicAddWithWarp(&(d_mean[bid * groups + gid]), d_mean_data); CudaAtomicAddWithWarp(&(d_var[bid * groups + gid]), d_var_data); if (flags & kHasScale) CudaAtomicAddWithWarp(&(d_scale[ccid]), d_scale_data); if (flags & kHasBias) CudaAtomicAddWithWarp(&(d_bias[ccid]), d_bias_data); } template __global__ void GroupNormBackward(const T* x, const T* d_y, const T* scale, const T* bias, const T* var, const T* d_mean, const T* d_var, int N, int C, int W, int imsize, int groups, int group_size, T epsilon, T* d_x) { int gid = blockIdx.y; int cid = blockIdx.x; int bid = blockIdx.z; int H = imsize / W; int number = min(group_size, static_cast(C - gid * group_size)); int ccid = gid * group_size + cid; if (ccid >= C) return; T x_var = var[bid * groups + gid]; T d_x_mean = d_mean[bid * groups + gid]; T d_x_var = d_var[bid * groups + gid]; T x_var_inv = 1.0 / sqrt(x_var + epsilon); T number_inv = 1.0 / (number * imsize); T x_scale = (flags & kHasScale) ? scale[ccid] : 1; T x_bias = (flags & kHasBias) ? bias[ccid] : 0; T x_scale_inv = 0; if (x_scale != 0) x_scale_inv = 1.0 / x_scale; for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) { int hid = imid / W; int wid = imid % W; T tmp = x[(bid * H + hid) * W * C + wid * C + ccid]; T v_y = (tmp - x_bias) * x_scale_inv; T dly = d_y[(bid * H + hid) * W * C + wid * C + ccid]; d_x[(bid * H + hid) * W * C + wid * C + ccid] = x_var_inv * (dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean); } } template __global__ void VectorizedGetDsDbCUDAKernel(int imsize, const T* x, const T* dy, T* ds, T* db) { int i = blockIdx.x; AccT ds_sum = static_cast(0); AccT db_sum = static_cast(0); x += i * imsize; const int input_offset = ((uint64_t)x) % ALIGN_BYTES / sizeof(T); phi::Array ins; ins[0] = x; ins[1] = dy; ThreadReduce(ins, imsize, input_offset, &db_sum, &ds_sum); ReduceMeanAndVar(db, ds, db_sum, ds_sum, 1); } template __global__ void ScalarGetDsDbCUDAKernel(int imsize, const T* x, const T* dy, T* ds, T* db) { const int nc = blockIdx.x; T ds_sum = 0; T db_sum = 0; for (int i = threadIdx.x; i < imsize; i += blockDim.x) { const int index = nc * imsize + i; ds_sum += dy[index] * x[index]; db_sum += dy[index]; } ReduceMeanAndVar(db, ds, db_sum, ds_sum, 1); } template __global__ void GetScaleBiasGradientCUDAKernel(int N, int C, int group, T epsilon, const T* mean, const T* var, const T* ds, const T* db, T* d_scale, T* d_bias) { const int c = blockIdx.x * blockDim.x + threadIdx.x; if (c < C) { const int G = group; const int D = C / G; T sum1 = 0; T sum2 = 0; for (int n = 0; n < N; ++n) { const int nc = n * C + c; const int ng = n * G + c / D; sum1 += (d_scale == nullptr) ? T(0) : ((ds[nc] - db[nc] * static_cast(mean[ng])) * static_cast(rsqrt(var[ng] + epsilon))); sum2 += (d_bias == nullptr) ? T(0) : db[nc]; } if (d_scale != nullptr) { d_scale[c] = sum1; } if (d_bias != nullptr) { d_bias[c] = sum2; } } } template __global__ void GetBackwardParamsCUDAKernel(int imsize, int groups, int group_size, T epsilon, const T* mean, const T* var, const T* scale, const T* ds, const T* db, T* p1, T* p2, T* p3) { const int n = blockIdx.x; const int g = blockIdx.y; const int ng = n * groups + g; T sum1 = 0; T sum2 = 0; T var_inv = rsqrt(var[ng] + epsilon); for (int64_t i = threadIdx.x; i < group_size; i += blockDim.x) { const int64_t index = ng * group_size + i; const int64_t c = g * group_size + i; const T scale_v = scale == nullptr ? T(1) : static_cast(scale[c]); sum1 += ds[index] * scale_v; sum2 += db[index] * scale_v; const T scale_c = scale == nullptr ? T(0) : static_cast(scale[c]); p1[index] = scale_c * var_inv; } typedef cub::BlockReduce BlockReduce; __shared__ typename BlockReduce::TempStorage ds_storage; __shared__ typename BlockReduce::TempStorage db_storage; sum1 = BlockReduce(ds_storage).Reduce(sum1, cub::Sum()); sum2 = BlockReduce(db_storage).Reduce(sum2, cub::Sum()); if (threadIdx.x == 0) { const T s = T(1) / static_cast(group_size * imsize); const T x = (sum2 * static_cast(mean[ng]) - sum1) * static_cast(var_inv) * static_cast(var_inv) * static_cast(var_inv) * s; p2[ng] = x; p3[ng] = -x * static_cast(mean[ng]) - sum2 * static_cast(var_inv) * s; } } template __global__ void GetXGradientCUDAKernel(int imsize, int C, int group_size, int groups, T* p1, T* p2, T* p3, const T* x, const T* dy, T* dx) { int cid = blockIdx.x; int gid = blockIdx.y; int bid = blockIdx.z; int ccid = bid * C + gid * group_size + cid; int ng = bid * groups + gid; int nc = gid * group_size + cid; for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) { int index = (bid * C + nc) * imsize + imid; dx[index] = p1[ccid] * dy[index] + p2[ng] * x[index] + p3[ng]; } } template class GroupNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const std::string data_layout_str = ctx.Attr("data_layout"); const DataLayout data_layout = framework::StringToDataLayout(data_layout_str); const float epsilon = ctx.Attr("epsilon"); auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* mean = ctx.Input("Mean"); auto* var = ctx.Input("Variance"); auto* scale = ctx.Input("Scale"); auto* bias = ctx.Input("Bias"); auto* d_y = ctx.Input(framework::GradVarName("Y")); const auto groups = ctx.Attr("groups"); // init output auto* d_x = ctx.Output(framework::GradVarName("X")); auto* d_scale = ctx.Output(framework::GradVarName("Scale")); auto* d_bias = ctx.Output(framework::GradVarName("Bias")); const auto& x_dims = x->dims(); const int C = (data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); const int group_size = C / groups; const int W = (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1] : x_dims[x_dims.size() - 2]); d_x->mutable_data(ctx.GetPlace()); phi::funcs::SetConstant set_zero; auto& dev_ctx = ctx.template device_context(); Tensor ds, db; ds.mutable_data({x_dims[0], C}, ctx.GetPlace()); db.mutable_data({x_dims[0], C}, ctx.GetPlace()); T* ds_data = ds.data(); T* db_data = db.data(); auto* y_data = y->data(); auto* x_data = x->data(); T* d_x_data = nullptr; if (d_x) d_x_data = d_x->data(); auto* dy_data = d_y->data(); auto* var_data = var->data(); auto* mean_data = mean->data(); T* d_scale_data = nullptr; if (d_scale) { d_scale->mutable_data(ctx.GetPlace()); d_scale_data = d_scale->data(); } T* d_bias_data = nullptr; if (d_bias) { d_bias->mutable_data(ctx.GetPlace()); d_bias_data = d_bias->data(); } const T* scale_data = nullptr; if (scale) scale_data = scale->data(); const T* bias_data = nullptr; if (bias) bias_data = bias->data(); int imsize = 1; if (data_layout == DataLayout::kNCHW) { for (int i = 2; i < x_dims.size(); ++i) { imsize *= x_dims[i]; } } else { for (int i = 1; i < x_dims.size() - 1; ++i) { imsize *= x_dims[i]; } } #ifdef __HIPCC__ int block_size = std::max(std::min(256, imsize), 64); const int block_dims = 256; #else int block_size = std::min(1024, imsize); const int block_dims = 1024; #endif dim3 grid(group_size, groups, x_dims[0]); dim3 threads(block_size, 1, 1); int flags = (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias; if (data_layout == DataLayout::kNCHW) { using AccT = typename details::MPTypeTrait::Type; constexpr int vec_size = sizeof(float4) / sizeof(T); const int max_num_threads = 1024; int max_block_size = std::min(imsize / vec_size, max_num_threads); int block_size_nchw = 1; while (block_size_nchw < max_block_size) { block_size_nchw *= 2; } block_size_nchw = std::max(block_size_nchw, kps::details::kWarpSize); dim3 blocks(block_size_nchw); if (imsize < vec_size * block_size_nchw) { ScalarGetDsDbCUDAKernel< T><<>>( imsize, x_data, dy_data, ds_data, db_data); } else { VectorizedGetDsDbCUDAKernel< T, AccT, vec_size><<>>( imsize, x_data, dy_data, ds_data, db_data); } if (d_scale || d_bias) { const int block = 256; GetScaleBiasGradientCUDAKernel< T><<<(C + block - 1) / block, block, 0, dev_ctx.stream()>>>( x_dims[0], C, groups, epsilon, mean_data, var_data, ds_data, db_data, d_scale_data, d_bias_data); } if (d_x_data != nullptr) { // p1 * dy + p2 * x + p3, // p1, p2, p3 represent the reverse calculation of temporary variables // p1 = scale * var_inv // p2 = (db * scale * mean - ds * scale) * pow(var_inv, 3) * (1/n) // p3 = -p2 * mean[ng] - db * scale * var_inv * (1/n); Tensor p1, p2, p3; p1.mutable_data({x_dims[0] * C}, ctx.GetPlace()); p2.mutable_data({x_dims[0], groups}, ctx.GetPlace()); p3.mutable_data({x_dims[0], groups}, ctx.GetPlace()); T* p1_data = p1.data(); T* p2_data = p2.data(); T* p3_data = p3.data(); GetBackwardParamsCUDAKernel<<< dim3(x_dims[0], groups), block_dims, 0, dev_ctx.stream()>>>( imsize, groups, group_size, epsilon, mean_data, var_data, scale_data, ds_data, db_data, p1_data, p2_data, p3_data); GetXGradientCUDAKernel<<>>( imsize, C, group_size, groups, p1_data, p2_data, p3_data, x_data, dy_data, d_x_data); } } else { if (d_scale) { set_zero(dev_ctx, d_scale, static_cast(0)); } if (d_bias) { set_zero(dev_ctx, d_bias, static_cast(0)); } Tensor temp_var; temp_var.mutable_data(var->dims(), ctx.GetPlace()); set_zero(dev_ctx, &temp_var, static_cast(0)); T* temp_var_data = temp_var.data(); Tensor temp_mean; temp_mean.mutable_data(var->dims(), ctx.GetPlace()); set_zero(dev_ctx, &temp_mean, static_cast(0)); T* temp_mean_data = temp_mean.data(); int flags = (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias; UNROLL_ALL_CASES(flags, GroupNormBackwardGetMeanAndVar, y_data, scale_data, bias_data, dy_data, x_dims[0], C, W, imsize, groups, group_size, epsilon, temp_mean_data, temp_var_data, d_scale_data, d_bias_data); if (d_x_data != nullptr) { UNROLL_ALL_CASES(flags, GroupNormBackward, y_data, dy_data, scale_data, bias_data, var_data, temp_mean_data, temp_var_data, x_dims[0], C, W, imsize, groups, group_size, epsilon, d_x_data); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( group_norm, ops::GroupNormKernel, ops::GroupNormKernel); REGISTER_OP_CUDA_KERNEL( group_norm_grad, ops::GroupNormGradKernel, ops::GroupNormGradKernel);