/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" #include "paddle/memory/memcpy.h" #include "unsupported/Eigen/CXX11/Tensor" namespace paddle { namespace operators { using Tensor = framework::Tensor; template using EigenMatrix = framework::EigenMatrix; template void PrepareSamples(const framework::ExecutionContext& context) { auto label = context.Input("Label"); const T* label_data = label->data(); auto label_dims = label->dims(); int num_classes = context.Attr("num_classes"); // random machine std::random_device rd; std::mt19937 rng(rd()); std::uniform_int_distribution rand(0, num_classes - 1); auto sample_labels = context.Output("SampleLabels"); auto sample_labels_dims = sample_labels->dims(); int* sample_labels_data = sample_labels->mutable_data(context.GetPlace()); int num_label = label_dims.size() == 2 ? label_dims[1] : 1; for (size_t i = 0; i < label_dims[0]; ++i) { int j = 0; for (; j < num_label; ++j) { sample_labels_data[sample_labels_dims[1] * i + j] = label_data[i * num_label + j]; } for (; j < sample_labels_dims[1]; ++j) { int id = rand(rng); sample_labels_data[sample_labels_dims[1] * i + j] = id; } } } template class NCEKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { PrepareSamples(context); auto sample_labels = context.Output("SampleLabels"); const int* sample_labels_data = sample_labels->data(); auto sample_out = context.Output("SampleLogits"); T* sample_out_data = sample_out->mutable_data(context.GetPlace()); auto label = context.Input("Label"); auto sample_weight = context.Input("SampleWeight"); const T* sample_weight_data = nullptr; if (sample_weight != nullptr) { sample_weight_data = sample_weight->data(); } auto out = context.Output("Out"); T* out_data = out->mutable_data(context.GetPlace()); int num_smalped_classes = context.Attr("num_sampled_classes"); int num_classes = context.Attr("num_classes"); int num_true_class = 1; if (label != nullptr) { num_true_class = label->dims()[1]; } T b = 1. / num_classes * num_smalped_classes; // forward bias auto bias = context.Input("B"); if (bias != nullptr) { const T* bias_data = bias->data(); for (size_t i = 0; i < sample_labels->numel(); ++i) { sample_out_data[i] = bias_data[sample_labels_data[i]]; } } else { for (size_t i = 0; i < sample_labels->numel(); ++i) { sample_out_data[i] = 0; } } // forward mul auto input_mat = EigenMatrix::From(*(context.Input("X"))); auto weight_mat = EigenMatrix::From(*(context.Input("W"))); for (size_t i = 0; i < sample_labels->numel(); ++i) { // sample_out_data[i] += (input_mat.chip((int)(i / // sample_labels->dims()[1]), 0) * weight_mat.chip(sample_labels_data[i], // 0)).sum(); Eigen::Tensor result = (input_mat.chip((int)(i / sample_labels->dims()[1]), 0) * weight_mat.chip(sample_labels_data[i], 0)) .sum(); sample_out_data[i] += result(0); // activation_->forward sample_out_data[i] = (1 / 1 + (sample_out_data[i])); } // forward cost for (size_t i = 0; i < sample_labels->dims()[0]; ++i) { size_t j = 0; T w = sample_weight == nullptr ? 1 : sample_weight_data[i]; // for true classes for (; j < num_true_class; ++j) { T o = sample_out_data[i * sample_out->dims()[1] + j]; T cost = -log(o / (o + b)); out_data[i] += w * cost; } // for sampled neg classes for (; j < sample_labels->dims()[1]; ++j) { T o = sample_out_data[i * sample_out->dims()[1] + j]; T cost = -log(b / (o + b)); out_data[i] += w * cost; } } } }; template class NCEGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto label = context.Input("Label"); auto sample_out = context.Input("SampleLogits"); const T* sample_out_data = sample_out->data(); auto sample_labels = context.Input("SampleLabels"); const int* sample_labels_data = sample_labels->data(); auto sample_weight = context.Input("SampleWeight"); const T* sample_weight_data = nullptr; if (sample_weight != nullptr) { sample_weight_data = sample_weight->data(); } int num_smalped_classes = context.Attr("num_sampled_classes"); int num_classes = context.Attr("num_classes"); int num_true_class = 1; if (label != nullptr) { num_true_class = label->dims()[1]; } T b = 1. / num_classes * num_smalped_classes; Tensor sample_grad; // tmp tensor T* sample_grad_data = sample_grad.mutable_data(sample_labels->dims(), context.GetPlace()); // backward cost for (size_t i = 0; i < sample_labels->numel(); ++i) { T o = sample_out_data[i]; T w = sample_weight == nullptr ? 1 : sample_weight_data[i / sample_labels->dims()[1]]; sample_grad_data[i] = (i % sample_labels->dims()[1]) < num_true_class ? -w * b / (o * (o + b)) : w / (o + b); // sigmoid->backward sample_grad_data[i] = (o > 0) ? sample_grad_data[i] : ((o < 0) ? -sample_grad_data[i] : 0); } // get d_bias auto d_bias = context.Output(framework::GradVarName("B")); if (d_bias != nullptr) { T* d_bias_data = d_bias->mutable_data(context.GetPlace()); for (size_t i = 0; i < sample_labels->numel(); ++i) { d_bias_data[sample_labels_data[i]] += sample_grad_data[i]; } } // get d_w auto d_w = context.Output(framework::GradVarName("W")); if (d_w != nullptr) { auto d_w_matrix = EigenMatrix::From(*d_w); auto x_matrix = EigenMatrix::From(*(context.Input("X"))); for (size_t i = 0; i < sample_labels->numel(); ++i) { d_w_matrix.chip(sample_labels_data[i], 0) = x_matrix.chip((int)(i / sample_labels->dims()[1]), 0) * sample_grad_data[i]; } } // get d_x auto d_x = context.Output(framework::GradVarName("X")); if (d_x != nullptr) { auto d_x_matrix = EigenMatrix::From(*d_x); auto w_matrix = EigenMatrix::From(*(context.Input("W"))); for (size_t i = 0; i < sample_labels->numel(); ++i) { d_x_matrix.chip((int)(i / sample_labels->dims()[1]), 0) += w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i]; } } } }; } // namespace operators } // namespace paddle