// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/amp_kernel.h" #include "paddle/phi/common/amp_type_traits.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/empty_kernel.h" #include "paddle/phi/kernels/impl/amp_kernel_impl.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/memory/memory.h" namespace phi { // Utils template __global__ void InverseAndMemset(const T* s, T* o, bool* found_inf) { *o = 1.0 / *s; *found_inf = false; } template __global__ void CheckFiniteAndUnscale(const T** xs, const MT* scale, int64_t size, int64_t* starts, bool* found_inf, T** outs) { const int64_t tid = threadIdx.x + blockIdx.x * blockDim.x; // copy starts array from global memory to shared memory extern __shared__ int64_t s_starts[]; for (int i = threadIdx.x; i <= size; i += blockDim.x) { s_starts[i] = starts[i]; } __syncthreads(); const int64_t num = s_starts[size]; int xs_index = 0; bool local_found_inf = false; const MT local_scale = *scale; for (int64_t idx = tid; idx < num; idx += gridDim.x * blockDim.x) { // get the "out" index of "id" // For example: // idx = 15, starts = [0, 10, 10, 20, 30] // because 10 <= idx < 20 ==> // the idx element locate in the 3rd tensor (notice the 2nd tensor size is // 0) int next_xs_index = xs_index; while (idx >= s_starts[next_xs_index]) next_xs_index++; xs_index = next_xs_index - 1; // get in data and out data const T* in = xs[xs_index]; T* out = outs[xs_index]; int64_t in_idx = idx - s_starts[xs_index]; // Unscale MT val = static_cast(in[in_idx]) * local_scale; T narrow_val = static_cast(val); out[in_idx] = narrow_val; // CheckFinite if (!isfinite(narrow_val)) { local_found_inf = true; } } if (local_found_inf) { *found_inf = true; } } template __global__ void GpuUpdateLossScaling(const FoundNanInfFlagT found_inf_data, const T* pre_loss_scaling_data, const int* good_in_data, const int* bad_in_data, const int incr_every_n_steps, const int decr_every_n_nan_or_inf, const float incr_ratio, const float decr_ratio, T* updated_loss_scaling_data, int* good_out_data, int* bad_out_data) { Update(found_inf_data, pre_loss_scaling_data, good_in_data, bad_in_data, incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, decr_ratio, updated_loss_scaling_data, good_out_data, bad_out_data); } template __global__ void FusedFillIf(T** outs, const size_t xs_size, const int64_t* starts, const T value, const bool* has_inf) { if (!(*has_inf)) return; const int tid = threadIdx.x + blockIdx.x * blockDim.x; // copy starts array from global memory to shared memory extern __shared__ int64_t s_starts[]; for (int i = threadIdx.x; i <= xs_size; i += blockDim.x) { s_starts[i] = starts[i]; } __syncthreads(); const int64_t total_num = s_starts[xs_size]; int out_index = 0; for (int64_t id = tid; id < total_num; id += blockDim.x * gridDim.x) { // get the "out" index of "id" // For example: // id = 15, starts = [0, 10, 10, 20, 30] // because 10 <= id < 20 ==> // the id element locate in the 3rd tensor (notice the 2nd tensor size is 0) int next_out_index = out_index; while (id >= s_starts[next_out_index]) next_out_index++; out_index = next_out_index - 1; // get data pointer and index T* out_data = outs[out_index]; int64_t idx = id - s_starts[out_index]; // set value out_data[idx] = value; } } template class LazyZeros { public: void operator()(const phi::GPUContext& dev_ctx, const bool* found_inf_data, const std::vector& xs, const std::vector& outs) { size_t xs_size = xs.size(); if (xs_size == 0) return; const auto& cpu_place = phi::CPUPlace(); // alloc each tensor's start index and copy to device auto h_in_starts_mem = paddle::memory::Alloc(cpu_place, (xs_size + 1) * sizeof(int64_t)); int64_t* h_starts = reinterpret_cast(h_in_starts_mem->ptr()); auto d_in_starts_mem = paddle::memory::Alloc( dev_ctx.GetPlace(), (xs_size + 1) * sizeof(int64_t), phi::Stream(reinterpret_cast(dev_ctx.stream()))); int64_t* d_starts = reinterpret_cast(d_in_starts_mem->ptr()); // the start index value of each tensor is // the sum of previous tensor's size. For example: // outs = [10, 0, 10, 10] ==> starts = [0, 10, 10, 20, 30] h_starts[0] = 0; for (int i = 0; i < xs_size; i++) { h_starts[i + 1] = h_starts[i] + outs[i]->numel(); } paddle::memory::Copy(dev_ctx.GetPlace(), d_starts, cpu_place, h_starts, (xs_size + 1) * sizeof(int64_t), dev_ctx.stream()); // copy each tensor of "outs" data address array to device auto h_out_addrs_mem = paddle::memory::Alloc(cpu_place, xs_size * sizeof(T*)); T** h_out_addrs = reinterpret_cast(h_out_addrs_mem->ptr()); auto d_out_addrs_mem = paddle::memory::Alloc( dev_ctx.GetPlace(), xs_size * sizeof(T*), phi::Stream(reinterpret_cast(dev_ctx.stream()))); T** d_out_addrs = reinterpret_cast(d_out_addrs_mem->ptr()); for (size_t i = 0; i < xs_size; ++i) { h_out_addrs[i] = dev_ctx.Alloc(outs[i]); } paddle::memory::Copy(dev_ctx.GetPlace(), d_out_addrs, cpu_place, h_out_addrs, xs_size * sizeof(T*), dev_ctx.stream()); // launch cuda kernel int64_t total_num = h_starts[xs_size]; int64_t threads_per_block = std::min(static_cast(1024), total_num); int64_t elements_per_block = threads_per_block * 50; // each thread deal with 50 data int64_t blocks_per_grid = (total_num + elements_per_block - 1) / elements_per_block; FusedFillIf<<>>( d_out_addrs, xs_size, d_starts, static_cast(0), found_inf_data); } }; template class UpdateLossScalingFunctor { public: void operator()(const phi::GPUContext& dev_ctx, const bool* found_inf_data, const T* pre_loss_scaling_data, const int* good_in_data, const int* bad_in_data, const int incr_every_n_steps, const int decr_every_n_nan_or_inf, const float incr_ratio, const float decr_ratio, T* updated_loss_scaling_data, int* good_out_data, int* bad_out_data) const { if (IsFoundInfOnCPU) { GpuUpdateLossScaling <<<1, 1, 0, dev_ctx.stream()>>>(*found_inf_data, pre_loss_scaling_data, good_in_data, bad_in_data, incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, decr_ratio, updated_loss_scaling_data, good_out_data, bad_out_data); } else { GpuUpdateLossScaling <<<1, 1, 0, dev_ctx.stream()>>>(found_inf_data, pre_loss_scaling_data, good_in_data, bad_in_data, incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, decr_ratio, updated_loss_scaling_data, good_out_data, bad_out_data); } } }; // Kernels template void CheckFiniteAndUnscaleKernel(const Context& dev_ctx, const std::vector& xs, const DenseTensor& scale, std::vector outs, DenseTensor* found_infinite) { using MPDType = typename phi::dtype::MPTypeTrait::Type; const MPDType* scale_data = scale.data(); bool* found_inf_data = dev_ctx.template Alloc(found_infinite); DenseTensor inverse_scale = Empty(dev_ctx, {1}); MPDType* inverse_scale_v = inverse_scale.template data(); InverseAndMemset<<<1, 1, 0, dev_ctx.stream()>>>( scale_data, inverse_scale_v, found_inf_data); size_t xs_size = xs.size(); if (xs_size == 0) return; const auto& cpu_place = phi::CPUPlace(); // calculate each tensor's start index and copy to device auto h_starts_tensor = paddle::memory::Alloc(cpu_place, (xs_size + 1) * sizeof(int64_t)); int64_t* h_starts = reinterpret_cast(h_starts_tensor->ptr()); auto d_starts_tensor = paddle::memory::Alloc( dev_ctx.GetPlace(), (xs_size + 1) * sizeof(int64_t), phi::Stream(reinterpret_cast(dev_ctx.stream()))); int64_t* d_starts = reinterpret_cast(d_starts_tensor->ptr()); // the start index value of each tensor is // the sum of previous tensor's size. For example: // x = [10, 0, 10, 10] ==> starts = [0, 10, 10, 20, 30] h_starts[0] = 0; for (int i = 1; i <= xs_size; i++) { h_starts[i] = h_starts[i - 1] + xs[i - 1]->numel(); } int64_t total_num = h_starts[xs_size]; paddle::memory::Copy(dev_ctx.GetPlace(), d_starts, cpu_place, h_starts, (xs_size + 1) * sizeof(int64_t), dev_ctx.stream()); // copy each tensor's data address to device auto h_mem = paddle::memory::Alloc(cpu_place, 2 * xs_size * sizeof(T*)); const T** h_xs = reinterpret_cast(h_mem->ptr()); T** h_outs = reinterpret_cast(h_mem->ptr()) + xs_size; auto d_mem = paddle::memory::Alloc( dev_ctx.GetPlace(), 2 * xs_size * sizeof(T*), phi::Stream(reinterpret_cast(dev_ctx.stream()))); const T** d_xs = reinterpret_cast(d_mem->ptr()); T** d_outs = reinterpret_cast(d_mem->ptr()) + xs_size; for (size_t i = 0; i < xs_size; ++i) { h_xs[i] = xs[i]->data(); h_outs[i] = dev_ctx.template Alloc(outs[i]); } paddle::memory::Copy(dev_ctx.GetPlace(), d_xs, cpu_place, h_xs, 2 * xs_size * sizeof(T*), dev_ctx.stream()); // Launch Kernel int threads_per_block = std::min(static_cast(1024), total_num); int elements_per_block = threads_per_block * 20; // each thread deal with 20 number int blocks_per_grid = (total_num + elements_per_block - 1) / elements_per_block; CheckFiniteAndUnscale<<>>( d_xs, inverse_scale_v, xs_size, d_starts, found_inf_data, d_outs); } } // namespace phi PD_REGISTER_KERNEL(check_finite_and_unscale, GPU, ALL_LAYOUT, phi::CheckFiniteAndUnscaleKernel, float, double, phi::dtype::float16) {} PD_REGISTER_KERNEL(update_loss_scaling, GPU, ALL_LAYOUT, phi::UpdateLossScalingKernel, float, double, phi::dtype::float16) { kernel->InputAt(1).SetBackend(phi::Backend::ALL_BACKEND); }