# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle.v2 as paddle import paddle.fluid as fluid import contextlib import math import sys import numpy import unittest def resnet_cifar10(input, depth=32): def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'): tmp = fluid.layers.conv2d( input=input, filter_size=filter_size, num_filters=ch_out, stride=stride, padding=padding, act=None, bias_attr=False) return fluid.layers.batch_norm(input=tmp, act=act) def shortcut(input, ch_in, ch_out, stride): if ch_in != ch_out: return conv_bn_layer(input, ch_out, 1, stride, 0, None) else: return input def basicblock(input, ch_in, ch_out, stride): tmp = conv_bn_layer(input, ch_out, 3, stride, 1) tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None) short = shortcut(input, ch_in, ch_out, stride) return fluid.layers.elementwise_add(x=tmp, y=short, act='relu') def layer_warp(block_func, input, ch_in, ch_out, count, stride): tmp = block_func(input, ch_in, ch_out, stride) for i in range(1, count): tmp = block_func(tmp, ch_out, ch_out, 1) return tmp assert (depth - 2) % 6 == 0 n = (depth - 2) / 6 conv1 = conv_bn_layer( input=input, ch_out=16, filter_size=3, stride=1, padding=1) res1 = layer_warp(basicblock, conv1, 16, 16, n, 1) res2 = layer_warp(basicblock, res1, 16, 32, n, 2) res3 = layer_warp(basicblock, res2, 32, 64, n, 2) pool = fluid.layers.pool2d( input=res3, pool_size=8, pool_type='avg', pool_stride=1) return pool def vgg16_bn_drop(input): def conv_block(input, num_filter, groups, dropouts): return fluid.nets.img_conv_group( input=input, pool_size=2, pool_stride=2, conv_num_filter=[num_filter] * groups, conv_filter_size=3, conv_act='relu', conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, pool_type='max') conv1 = conv_block(input, 64, 2, [0.3, 0]) conv2 = conv_block(conv1, 128, 2, [0.4, 0]) conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5) fc1 = fluid.layers.fc(input=drop, size=512, act=None) bn = fluid.layers.batch_norm(input=fc1, act='relu') drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5) fc2 = fluid.layers.fc(input=drop2, size=512, act=None) return fc2 def train(net_type, use_cuda, save_dirname): classdim = 10 data_shape = [3, 32, 32] images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') if net_type == "vgg": print("train vgg net") net = vgg16_bn_drop(images) elif net_type == "resnet": print("train resnet") net = resnet_cifar10(images, 32) else: raise ValueError("%s network is not supported" % net_type) predict = fluid.layers.fc(input=net, size=classdim, act='softmax') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=predict, label=label) # Test program test_program = fluid.default_main_program().clone() optimizer = fluid.optimizer.Adam(learning_rate=0.001) optimizer.minimize(avg_cost) BATCH_SIZE = 128 PASS_NUM = 1 train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.cifar.train10(), buf_size=128 * 10), batch_size=BATCH_SIZE) test_reader = paddle.batch( paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) feeder = fluid.DataFeeder(place=place, feed_list=[images, label]) exe.run(fluid.default_startup_program()) loss = 0.0 for pass_id in range(PASS_NUM): for batch_id, data in enumerate(train_reader()): exe.run(feed=feeder.feed(data)) if (batch_id % 10) == 0: acc_list = [] avg_loss_list = [] for tid, test_data in enumerate(test_reader()): loss_t, acc_t = exe.run(program=test_program, feed=feeder.feed(test_data), fetch_list=[avg_cost, acc]) if math.isnan(float(loss_t)): sys.exit("got NaN loss, training failed.") acc_list.append(float(acc_t)) avg_loss_list.append(float(loss_t)) break # Use 1 segment for speeding up CI acc_value = numpy.array(acc_list).mean() avg_loss_value = numpy.array(avg_loss_list).mean() print( 'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'. format(pass_id, batch_id + 1, float(avg_loss_value), float(acc_value))) if acc_value > 0.01: # Low threshold for speeding up CI fluid.io.save_inference_model(save_dirname, ["pixel"], [predict], exe) return def infer(use_cuda, save_dirname=None): if save_dirname is None: return place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) # Use fluid.io.load_inference_model to obtain the inference program desc, # the feed_target_names (the names of variables that will be feeded # data using feed operators), and the fetch_targets (variables that # we want to obtain data from using fetch operators). [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model(save_dirname, exe) # The input's dimension of conv should be 4-D or 5-D. tensor_img = numpy.random.rand(1, 3, 32, 32).astype("float32") # Construct feed as a dictionary of {feed_target_name: feed_target_data} # and results will contain a list of data corresponding to fetch_targets. results = exe.run(inference_program, feed={feed_target_names[0]: tensor_img}, fetch_list=fetch_targets) print("infer results: ", results[0]) def main(net_type, use_cuda): if use_cuda and not fluid.core.is_compiled_with_cuda(): return # Directory for saving the trained model save_dirname = "image_classification_" + net_type + ".inference.model" train(net_type, use_cuda, save_dirname) infer(use_cuda, save_dirname) class TestImageClassification(unittest.TestCase): def test_vgg_cuda(self): with self.scope_prog_guard(): main('vgg', use_cuda=True) def test_resnet_cuda(self): with self.scope_prog_guard(): main('resnet', use_cuda=True) def test_vgg_cpu(self): with self.scope_prog_guard(): main('vgg', use_cuda=False) def test_resnet_cpu(self): with self.scope_prog_guard(): main('resnet', use_cuda=False) @contextlib.contextmanager def scope_prog_guard(self): prog = fluid.Program() startup_prog = fluid.Program() scope = fluid.core.Scope() with fluid.scope_guard(scope): with fluid.program_guard(prog, startup_prog): yield if __name__ == '__main__': unittest.main()